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1 Introduction

A general, low-cost method for accurately simulating human behavior with AI agents would have

wide application in the social sciences (Charness et al., 2023; Jackson et al., 2025). Recognizing

this potential, a growing literature explores whether Large Language Models (LLMs) can simulate

human responses in various settings.1 Across dozens of experiments, samples of these “AI subjects”

respond with remarkable similarity to humans—even when simulating novel experiments that did

not appear in the LLM’s training corpus (Binz et al., 2024; Hewitt et al., 2024; Li et al., 2024; Suh

et al., 2025). Yet within this literature, others find settings where the very same models are poor

human proxies.2 This inconsistency poses a challenge for AI simulations as robust and credible

predictive models. The core challenge is not simply achieving a close match between AI and human

responses in one setting, but building agents that will generalize reliably.

A natural starting point is to improve the instructions given to agents. These instructions, or

“prompts,” are a written description given to the LLM specifying who it is, what it believes, or

how it should behave and reason. Such second-person instructions (e.g., “You respond as a type-X

person”) can profoundly affect output distributions in predictable ways because advanced LLMs

have been explicitly tuned to follow instructions (Bai et al., 2022; Heikkilä, 2023; Ouyang et al.,

2022). Indeed, highly capable models with appropriate prompts can perform complex reasoning

and mathematical tasks at levels sometimes better even than that of highly educated humans.

Yet, finding prompts that generalize is nontrivial—even when human data are available to guide

search. The set of possible prompts is vast, ranging from simple combinations of social or demo-

graphic traits to complex programmatic instructions related to how humans make decisions (Xie et

al., 2025; Zhu et al., 2025). As in other machine-learning applications, the challenge is not only to

avoid underfitting but also to guard against overfitting. By iterating through enough prompts, one

can almost always find some arbitrary prompt that shifts the LLM’s responses to closely match a

given human distribution. For example, an LLM instructed “you randomly offer between $6 and

$9” may perfectly reproduce a distribution of human responses in a $20 dictator game, but such

a prompt would be nonsensical for a $5 dictator game. In contrast, a persona grounded in the

underlying behavioral drivers—e.g., “you are self-interested, but fair”—can perform well in-sample

and plausibly extend to a range of allocation games. Standard data-driven approaches, such as

a train-test split within a single dataset, cannot reliably distinguish between these two cases; the

latter appears better only when tested in truly new environments. If the goal is to predict behavior

in settings with no prior human data, how should researchers construct and evaluate prompts?

In this paper, we build agents that generalize. Our approach mirrors what researchers generally

try to do in social science, but in reverse. Rather than test a theory with empirical data, we

embed theory in agents (via natural language instructions) and then generate candidate empirical

1(Aher et al., 2023; Anthis et al., 2025; Argyle et al., 2022; Binz and Schulz, 2023, 2024; Capra et al., 2024; Cerina
and Duch, 2025; Chang et al., 2024; Hansen et al., 2024; Horton, 2023; Manning et al., 2024; Mei et al., 2024; Park
et al., 2024, 2023; Shah et al., 2025; Tranchero et al., 2024; Wang et al., 2025)

2(Atari et al., 2023; Cheng et al., 2023; Gao et al., 2024; Gui and Toubia, 2023; Santurkar et al., 2023)
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data. We then optimize over the theory and agent composition to reduce the error with respect to

real-world data from a domain in which we hope to make predictions. Human data from distinct

but conceptually similar settings serve as held-out test sets or are incorporated into training to

improve generalization. We show that agents constructed and validated in this way can dramatically

improve the predictive power of AI subjects in novel settings at scale. Both steps are essential:

without theoretical grounding, optimized prompts may fail to meaningfully improve even in-sample

predictions, and without cross-setting validation, they are prone to overfit.

The approach uses three kinds of data:

1. Training data (existing): Human data used to optimize AI simulations.

2. Validation/test data (existing): Human data generated from a distinct but presumably similar

data-generation process as the training data. It is used to evaluate optimized agents.

3. Target data (novel): New human data not in the LLM’s training corpus, where we want to

make predictions—from a presumably similar domain as the training and validation data.

The first step of the approach is to limit the “space” of prompts to a subset motivated by some

economic theory or causal mechanism relevant to the novel setting of interest. In effect, theory-

grounding is analogous to constraining the functional form of the hypothesis class in machine

learning. The second step is to optimize over this candidate set to best match the human training

data (Khattab et al., 2024). We employ two optimization methods: (i) a selection method that

identifies the optimal mixture of prompts from the candidate set (Bui et al., 2025; Leng et al., 2024;

Xie et al., 2025), and (ii) a construction method that optimizes numerical parameters embedded

directly in the prompts.

We validate whether prompts generalize using a train-test split approach inspired by the prin-

ciples of invariant risk minimization (Arjovsky et al., 2020; Heinze-Deml et al., 2018; Peters et al.,

2016). After specifying a candidate set of AI subjects based on some theory relevant to the new

setting of interest and optimizing them to match human training data in one setting where the

theory should apply, we validate them in other distinct settings where we also expect the same

theory to hold (e.g., optimize on a $20 dictator game, but test on a $5 dictator game). To be clear,

this means the validation set necessarily comes from a distinct data-generation process from that

which produced the training data. By construction, prompts with strong testing performance are

then those that capture generalizable relationships predictive of human behavior across contexts.

Consequently, if the novel target setting is governed by the same theory or causal mechanism used

to construct the optimized prompts (e.g., the target is $50 dictator game), we may gain confidence

that it will better predict human responses in that setting.

We illustrate this approach and provide evidence of its efficacy by leveraging training and val-

idation data with experiments from the behavioral economics literature using AI subjects. We

apply the selection method to Arad and Rubinstein (2012)’s 11-20 money request game, where

participants request an amount and receive a bonus if they choose exactly one less than their op-

ponent. Endowing AI subjects with distinct prompts corresponding to varying degrees of strategic

reasoning—the theoretical focus of Arad and Rubinstein—produces a mixture that closely matches
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the original human data.

When we validate these optimized samples on distinct variants of the 11-20 money request

game, they are substantially better predictors of human responses than baseline AI subjects with

no additional instructions. By contrast, scientifically meaningless, or “atheoretical” AI subjects de-

rived from historical figures, pseudo-scientific Myers-Briggs personality types, and those instructed

to select particular numbers can sometimes match human distributions in one variant of the game

but fail to generalize across others.

We test the predictive power of the optimized samples of AI subjects on unequivocally novel

human target data by constructing four new, preregistered games using crowdsourced (Horton

et al., 2011) participants from Prolific. These games are derived from the original 11-20 game

(and its variants), but adapted to other numeric ranges (1-10 and 1-7). The optimized sample

of theoretically-motivated prompts produce responses that predict the new human data far better

than the off-the-shelf baseline. Prediction error is decreased by 53%-73% across the games. By

contrast, the alignment of the atheoretical prompts—which failed validation—with the new human

data is often similar to or worse than the baseline. Even more striking, these AI subjects predict

the results of the new experiments in some games better than the human data from Arad and

Rubinstein; in one case, the KL divergence is halved.

A natural question is what statistical guarantees this approach affords. Without a correctly

specified causal model, no statistical procedure can guarantee performance in arbitrary new envi-

ronments (Pearl, 2009). Formal guarantees with existing data, like those required for prediction-

powered inference (Angelopoulos et al., 2023) and other related methods (Egami et al., 2023; Hardy

et al., 2025), would require a strictly firewalled validation set: data never used in the construction

of the underlying LLM (Ludwig et al., 2024; Modarressi et al., 2025; Mullainathan and Spiess,

2017; Sarkar and Vafa, 2024). This is a tall order impossible to meet in practice, even with existing

public weight LLMs, never mind private models. However, what we can guarantee is prediction

performance over a pre-committed family of settings.

This idea is similar to that in the literature on program evaluation and external validity, where

population-level treatment effects can be estimated by randomizing over a defined set of possible

samples (Allcott, 2015; Hotz et al., 2005). The first step is to establish a clearly defined space

of experimental settings—for example, variants of public goods games, dictator games, or other

allocation games differentiated by instructions, parameters, or other structural features. Then

randomly sample a subset of these settings and randomly assign human subjects to respond to each.

By comparing these human responses with LLM-generated predictions, we can make externally valid

estimates across the entire space.

A key distinction from the setup laid out in Hotz et al. and Allcott is that appropriate coverage

does not require that the family of settings share a data-generation process or that the underlying

samples of human subjects are from the same population. Indeed, the variance of estimates natu-

rally reflects how closely the held-out settings resemble those sampled. If all scenarios are variants

of a single setting—e.g., a dictator game with different monetary amounts—performance is tightly
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bounded; if they span disparate domains—e.g., many types of allocation games—estimates are

likely less precise. Note that even if a setting inadvertently appears in the model’s pre-training

data, the random sampling procedure still accounts for its contribution—such cases may merely

reduce prediction error.

We explore this setup at scale by constructing a population of 883, 320 novel strategic games.

These games are not in any LLM’s training corpus. From the population, we sample 1, 500 unique

games and have 4, 500 human subjects each play a game in a final preregistered experiment. We

take the theoretically-grounded level-k agents used in the previous experiment, agents constructed

months before the novel set of 883, 320 games existed, and evaluate their ability to predict the

human responses.

These theory-grounded agents are far better predictors of the human data than the baseline AI

off-the-shelf. In the average game, they assign 3.41 times more probability to the actions actually

taken by human subjects. The optimized agents offer similarly large gains (2.44 times) over the

unique Harsanyi-Selten-selected equilibria calculated for each of the 1,500 games (Harsanyi and

Selten, 1988). Because the games were randomly sampled, the corresponding confidence intervals

over the relative predictive power are externally valid for the much larger population. All this was

accomplished using only a small amount of human training and validation data—fewer than 200

observations from Arad and Rubinstein.

The goal of AI agent simulations in this paper is to harness two extensive sources of information

to create better predictive agents: i) well-established theoretical models from the social sciences,

and ii) the immense knowledge about human behavior that LLMs have implicitly learned during

training (Ameisen et al., 2025; Lindsey et al., 2025). In a sense, AI agents are a vessel through

which we can flexibly apply theory to any setting. Our approach aims to generate such agents

by conducting a structured trial run across various settings, building evidence that theoretically-

grounded prompts generalize effectively to similar yet distinct environments. All with only a small

amount of additional training data drawn from human subjects. Our main contribution is to

systematize these ideas and then provide empirical evidence that they can dramatically improve

the predictive power of AI subjects in new settings.

The remainder of this paper is organized as follows. Section 2 discusses why LLMs can predict

human behavior. Section 3 begins with a concrete example of identifying generalizable relationships

and constructing prompts that better predict human subjects in new settings. We then describe

the idea more generally and specify the optimization methods. Section 4 illustrates the approach

and demonstrates its efficacy empirically with several experiments. Section 5 demonstrates how

agents can be used in a pre-committed setting to provide externally valid statistical estimates on

predictive accuracy at scale. The paper concludes with a discussion and implications in Section 6.
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2 Why LLM Agents can predict the real world

There are two paths to LLM simulations matching what we observe in new real-world settings: i) a

sufficiently rich world model that is informative about the domain in question, and ii) memorization

of the correct social science literature and application of that knowledge to new domains. Unlike,

say, the physical sciences, the social world is not just represented in the training data. The training

data is largely a representation of the social world—how people communicate, how they make

decisions, how they interact with each other, how they perceive the world, and so on. This is not

to say that the data is the social world or is a perfect representation of the social world—far from

it—but evidence abounds that LLMs are effective predictors of human behavior in new settings

(Binz et al., 2024; Hewitt et al., 2024; Li et al., 2024; Suh et al., 2025; Tranchero et al., 2024)

and have implicitly learned rich internal representations of human concepts (Ameisen et al., 2025;

Lindsey et al., 2025). We might be skeptical that a language model could, say, represent physics

we do not already possess, but it seems very probable that it “knows” things about the social

world that have never been written down in academic work. Figure 1 depicts the data pipeline that

ultimately feeds an LLM through the two paths. The process begins with the social world, only

a subset of which is ever documented. That documentation splits into two corpora: peer-reviewed

social-science research and non-scholarly human-generated text (e.g., news, blogs, social media,

books, movie scripts, etc.).

Both paths are critical, so we briefly highlight their contributions in turn. There are an enormous

number of sources that would reiterate the same basic economic knowledge for the construction

of the world model. Take, for example, the observation that people prefer lower prices to higher

prices and a greater quantity to a smaller amount, at the same price. Any economic textbook would

contain this observation, in some written form, or with ∂
∂p [u(x

∗) − px∗] < 0. But it also appears

from widely-read pre-social science sources, e.g., Amos 8:5, putting words into the mouths of unfair

traders (registering disapproval): “And the Sabbath, that we may offer wheat for sale, that we may

make the ephah small [a weight to put on a balance] and the shekel great and deal deceitfully with

false balances.” Basic economic knowledge is part of the information creating the LLM, coming

from myriad sources across the training data. But what about more subtle knowledge, such as the

literature on cheap talk in bargaining games? Although we would not expect the LLM to learn

every detail and implication of Crawford and Sobel (1982) purely through training, it certainly has

sources to learn about some of the basic ideas and tensions. For example, “It’s no good, it’s no

good!” says the buyer—then goes off and boasts about the purchase. Proverb 20:14 captures the

idea that in bargaining, the buyer and seller are not always forthright.

As for the social science literature, it is actually a common concern with AI subjects that data

generated from LLMs simply reflects memorized results from previous work. This concern is often

misplaced because memorization can be a boon towards generalization. Where memorization would

be problematic is if prediction was so “shallow” as to be brittle, but memorization of patterns,

processes, and relationships that generalize are the very things we want the LLM to internalize

and apply more broadly. And identifying such patterns is precisely the advantage of training and
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validating on conceptually similar but still distinct experimental data.

To make an analogy, suppose a student studying for an economics exam has memorized the

fact that {Defect, Defect} is the unique pure strategy Nash equilibrium for the prisoner’s dilemma,

and then selects that option when it appears on the midterm. Such shallow memorization would

be a problem, as it would not generalize to other games with disparate payoffs or action spaces.

Useful memorization would be a student who can memorize that a Nash Equilibrium is the strategy

profile such that every player is best-responding to every other player, and can apply this idea to

identify equilibria in a variety of novel games on the exam. As we will later show, our approach is

specifically designed to identify and optimize for the latter kind of memorization and the LLM’s

capacity to apply it effectively.3

With that said, each path is ultimately shaped by its own—in many cases opaque—selection

mechanism, after which a further, largely proprietary, filtering occurs when curators assemble the

LLM’s training set.4 The resulting data, combined with architectural choices and post-training

alignment procedures, yield a fitted model that users can query with prompts to obtain predictions

about the social world. Because information is repeatedly sampled and screened along this chain,

the LLM’s representation of reality is necessarily partial and biased.

Figure 1: Two paths to LLM simulations matching the real world

Social
World

Non-scholarly Human
media about world

Social science
literature

Training
data

Fitted
Model

Predictions
about social world

Everything written/recorded

Everything that
gets researched
and published

Some unclear
selection process

Some unclear selection process

Architecture and
RLHF/post-training

Add user & system prompts

Notes: This figure is a simplified depiction of the data pipeline feeding frontier Large Language Models. It highlights
the two possible paths to LLM simulations matching the real world: acting in accordance with i) text derived from
the social science literature or ii) all remaining behavior captured in non-scholarly human-generated text.

Figure 2 translates those processing pipelines into the taxonomy of statistical classification and

confusion matrices. The upper left green oval denotes the set of propositions that are true about

3Of course, such memorization is not valuable if the LLM cannot apply it effectively (Mancoridis et al., 2025).
However, as we will show, this is precisely why agents must be validated in distinct settings.

4Although the vast majority of published research is likely in most foundation models’ training data.
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the social world, the black oval the subset recorded in the scholarly literature, and the blue oval the

predictions produced by AI-agent simulations. Their intersections create true positives (claims that

are both true and reproduced by simulations), false positives (claims asserted by the simulations

but false in reality), false negatives (true claims the simulations miss), and true negatives (false

claims the simulations also reject). The small “feet” protruding from the main shapes underscore

that AI can be either helpful—by corroborating good social science or by refusing to imitate bad

social science—or harmful—when it introduces spurious results or fails to reproduce legitimate

findings.

Figure 2: What is true and false in the world and where AI simulations may help or hurt research

Notes: This figure displays the predictions made by AI simulations relative to the social science literature and the
true social world. The upper left green oval presents what’s true about the social world. The right black oval is the
set of things deemed “true” by academic work, and the blue is the set of things predicted by AI simulations. The
Venn diagram implicitly offers a confusion matrix for where AI simulations can help—or hurt—by offering predictions
in the social world.

Taken together, Figures 1 and 2 make two complementary points. First, the training pipeline

furnishes the LLM with an inevitably selective and noisy view of the social world, so we expect

errors. Second, the value—or danger—of deploying LLM-driven simulations in social science hinges

on where their outputs land in the confusion matrix: researchers stand to gain when simulations

fall in the true-positive and true-negative regions but risk amplifying error when they generate

false positives or neglect well-established results. Even if there is much to gain from an LLM’s rich

world model, rigorous external validation against ground truth is necessary before simulations can

be treated as credible social scientific evidence of human behavior.

2.1 Limits imposed by an imperfect world model

Some might argue that the above logic is problematic because the LLM does not learn a fully

coherent world model from examples alone. And that simulating human responses in new settings
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may produce unexpected failures (Vafa et al., 2024a). We have already reiterated one response

to this critique: there is ample evidence that LLMs have learned rich internal representations of

human concepts and have the capacity to predict human behavior in new experiments. Clearly,

the most advanced foundation models do indeed have a rich, albeit imperfect, world model. Even

so, the critique is important to address.

Vafa et al. (2024b) illustrate the concern. They train a small language model to predict paths

between points in New York City based on rides from taxi drivers. To do this, they label every single

intersection in the city with a unique identifier. Each ride is then tokenized as an initial intersection,

an ending intersection, and a series of actions—“left,” “right,” “straight,” etc.—between them.

When trained on thousands of these rides, the model can predict the correct sequence of actions to

get between hold-out sets of starting and ending intersections with high accuracy. Yet, the authors

show that the inferred map of New York City omits streets, invents others, and the predictions are

far less accurate when street detours are introduced. The language model’s world model is brittle.

It is not explicitly designed to be a map of the city.5

While a perfectly coherent world model would be a boon to AI simulations, it is not strictly

necessary to have credible predictions in many contexts. Rather, as McCoy et al. (2024) posit, the

simulations can rely on what the LLM was designed to do: follow instructions (Bai et al., 2022;

Heikkilä, 2023; Ouyang et al., 2022). Consider an LLM being used to predict how humans might

navigate some city. Given a perfect GPS, this would be trivial. However, the LLM might still

navigate well if given a broadly applicable set of instructions and updated information about the

immediate environment. If it were endowed with “Stop at stop signs. Stay on the right side of the

road. Follow the speed limit.” and intermittent updates about the immediate environment, it could

move around reasonably. Navigating with those instructions is a far simpler task—and requires a

far simpler world model—than reconstructing the entire street grid from scratch, and it is robust

to many small perturbations.

Theoretically-grounded persona prompts serve the same purpose. They supply behavioral rules

that the model can apply even when its background world model may be biased or incomplete.

As long as a snapshot of the environment is available (i.e., the instructions for the setting), more

accurate predictions can be made, as we will show. Of course, this strategy can fail if the rules

themselves do not generalize, which is why, as we outline in Section 3, we train personas on one

set of games and test them on related but distinct games. Only instructions that capture patterns

stable across these disparate contexts are kept.

This perspective may also shed light on why many AI subject experiments in the literature have

such poor fidelity. Much of this research focuses on the prompts as simple social and demographic

traits (Atari et al., 2023; Park et al., 2024; Röttger et al., 2024; Santurkar et al., 2023). Such “in-

5Vafa et al. (2025) offers another related context using Newtonian mechanics and planetary orbits. One point
largely ignored by both these demonstrations is that they abstract away the now-well-established scaling-and-breadth
effects: larger language models trained on broad, heterogeneous tasks tend to have the best performance across the
board. Empirical evidence spans power-law scaling studies and instruction-tuning work (Brown et al., 2020; Kaplan
et al., 2020; OpenAI et al., 2024; Ouyang et al., 2022; Sanh et al., 2022). It is not clear the extent to which frontier
models suffer from the incoherencies suggested by Vafa et al. (2024b, 2025)
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structions” like “respond as a 30-year-old male” or “respond like an associate professor from MIT”

assume the LLM has appropriately internalized how those traits interact with the strategic setting

coherently. When its world model is shaky, as may often be the case, the simulation deteriorates

and often defaults to caricatures of the target persona (Cheng et al., 2023). Prompts that encode

decision rules—e.g. “be self-interested but fair” or “reason two steps ahead”—demand far less from

the underlying world model and therefore transfer more reliably based on what the LLM was de-

signed to do. Fortunately, these are precisely the types of instructions often motivating economic

and behavioral theories. It is well established that humans often follow sets of interpretable choice

processes (Simon, 1977; Tversky and Kahneman, 1974).

2.2 The Lucas critique and generalizability

While traditional agent-based models have been valued for their increased flexibility and perceived

realism compared to classical economic models (Axtell and Farmer, 2025), they nonetheless remain

susceptible to the Lucas critique (Lucas, 1976).6 At its core, the Lucas critique emphasizes that

behavioral rules guiding agents cannot be treated as fixed parameters, but rather as endogenous

responses shaped by the prevailing policy environment. Traditional agent-based models typically

encode agents with predetermined decision-making rules—such as fixed saving rates, pricing strate-

gies, or trading algorithms—that remain static even when policy contexts shift. Consequently, this

rigidity prevents agent-based models from capturing how real economic actors would reconsider

and fundamentally restructure their strategies in response to policy changes. For example, if a cen-

tral bank transitioned from inflation targeting to nominal GDP targeting, firms would not merely

adjust prices according to previously defined strategies; they would instead develop entirely new

pricing rules informed by their understanding of the updated regime. Thus, the Lucas critique high-

lights the inherent risk in any modeling framework that interprets behavioral rules as structural

parameters, warning that treating such contingent rules as invariant can yield misleading policy

predictions.

LLM-based agents offer a promising approach to address this critique because they can engage in

flexible reasoning about environmental changes rather than following hard-coded behavioral rules.

Unlike traditional ABM agents that execute predetermined algorithms, LLM agents can interpret

new policies in context, reason through their implications, and adaptively formulate responses—

much as human economic actors would. One way to view the difference is that agent-based models

are exclusively a practice in some theory. In contrast, AI agents offer a tool that can apply theory,

but also leverage the empirical data acquired from training corpora. Therefore, when confronted

with a novel policy intervention, an LLM can draw on either set of information to inform its

behavior.

Consider the “theories” of being “self-interested but fair” or following the instructions to “rea-

son two steps ahead”. These are not perfect mechanical, predetermined processes, but behaviors

determined in part by the empirical context. LLMs can handle disparate contexts, reason about

6This may help explain why agent-based models have had relatively little uptake in mainstream economics.
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incentive changes, and generate flexible behavioral responses by appropriately imputing informa-

tion where necessary. This capability allows them to adapt to different structural contexts: they

can recognize that a policy regime change warrants not just different actions but different decision-

making frameworks entirely. The role of theoretically-grounded prompts, as we will see, is to tell

the LLM how to use its very rich world model in ways that generalize to new settings.

3 Building prompts that generalize

This section explains the approach for constructing AI subjects that better approximate human

response distributions in new environments.

3.1 A motivating example

Suppose we want to predict how people will share resources in a novel public goods game. In this

new game, for which we have no previous data, three participants will be endowed with $5 and

can choose to contribute any of their endowment, which will be multiplied by 3 and then divided

equally among all participants. While we do not have any prior public-goods game data, we do

have human data from a related $20 dictator game. It is related in the sense that one might

reasonably expect some generalizable features of human choice to affect allocations in both games.

The observed human offers from the dictator game are {6,6,7,7,8,8,9,9}.
Before the advent of LLMs, one might have tried to train a standard machine learning model

(e.g., decision trees or linear regression) solely on these dictator game offers.

However, such a model would struggle to transfer to the structurally distinct public goods

game, as it lacks the flexibility to adapt across different game formats. LLMs offer a more flexible

alternative. Rather than training a new model from scratch, we can prompt an existing LLM to

simulate responses by instructing it to behave as a human participant. For instance, we might use

a baseline system prompt: “You are a human.” We can then append game-specific prompts such

as “You are playing a dictator game with $20...” or “You are playing a public goods game with

$5...” without requiring any additional training.

However, this approach alone might fall short. Suppose that, prompted with the dictator game

instructions, the LLM produces a response distribution {3,3,3,3,3,4,4,4}. Although well within

the allowable offers, this distribution clearly diverges from the observed human data and leaves us

with little hope that it could effectively predict responses to the novel public goods game. Thus,

even though the model may capture some general aspects of human behavior as a baseline, i.e., a

tendency to offer nontrivial amounts (Henrich et al., 2001), it does so imperfectly.

One might think this problem could be addressed by first randomly splitting the human sample

of dictator game offers into training and testing sets. Then identifying the best-performing prompts

on the training set, and validating its performance on the test set (Ludwig et al., 2024; Mullainathan

and Spiess, 2017). Indeed, an LLM instructed “You randomly choose numbers between 6 and 9”

could reasonably predict both training and testing sets for any split of the human data better
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than the baseline LLM with no persona. However, such an approach will almost certainly fail to

generalize beyond the specific data-generation process that produced the dictator game offers. It

has, in effect, still overfit. Rather than overfitting to the training data, it has overfit to the whole

data-generation process.

Now, consider a more theoretically grounded prompt: “You are self-interested but fair.” Sup-

pose an LLM endowed with this prompt also generates offers in the 6-9 range for the $20 dictator

game. Crucially, this prompt aligns with known causal factors that drive human sharing behavior

more broadly (Charness and Rabin, 2002). It is a flexible decision-making program that applies to

many allocation games. Yet, without explicit knowledge of the causal drivers governing behavior

in the new public goods game, nothing in the data produced by either prompt alone rules out the

atheoretical random-number prompt.

This illustrates the core challenge. We seek to construct and select prompts that do not overfit

to a single data-generating process, but instead capture the stable behavioral drivers relevant across

settings. Then, we might gain confidence that they will better predict human responses in novel

target settings governed by the same drivers.

3.2 Identifying generalizable behavioral relationships

As our motivating example illustrates, a traditional train-test split does not adequately guard

against overfitting to a single data-generating process when predicting behavior in novel settings.

This approach is statistically valid only when training and testing samples are independently drawn

from the same distribution (Vapnik, 1998). Our objective, however, differs fundamentally. We

seek prompts that remain predictive even when the underlying data-generating process shifts. By

“data-generating process,” we specifically mean both the experimental setting (the environment in

which behavior occurs) and the population from which behavior is observed. Two datasets differ

meaningfully if they vary in either dimension.

Without direct training data from the novel target setting, no standard statistical procedure

ensures predictive accuracy (Ben-David et al., 2010; Klivans et al., 2024). Theoretically, only

a fully specified causal model could guarantee accurate predictions (Pearl, 2009). In practice,

however, constructing or inferring such causal models generally requires strong, often unverifiable

assumptions, which are rarely feasible in complex social science contexts.

Instead, we propose leveraging principles from invariant risk minimization (Arjovsky et al.,

2020) to identify behavioral relationships that remain stable despite shifts in the data-generating

process. Rather than splitting a single dataset, we deliberately choose training data from one

data-generation process and validate using data from a related but distinct process. Prompts

that consistently predict behavior across these distinct datasets likely capture generalizable, and

possibly causal (Heinze-Deml et al., 2018; Peters et al., 2016), drivers of behavior. As a result, these

validated prompts should be more effective in predicting human responses in novel but theoretically

similar settings.

Returning to our motivating example, suppose we have additional human data from a $5 dictator
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game, with observed offers {1,1,1,2,2,2}. Although stakes differ, both the $20 and $5 dictator games

likely share a common decision-making process: individuals give slightly less than half the available

amount, a reasonable balance more similar to what is observed in humans (Henrich et al., 2001). By

using the $20 dictator game as training data and the $5 dictator game for testing, we are implicitly

filtering for prompts based on their capacity to predict this proportional response. The earlier

atheoretical prompt “You randomly choose numbers between 6 and 9.” still fits the $20 game

perfectly, but clearly fails validation on the $5 game. By contrast, the theoretically-motivated

prompt “You are self-interested but fair.” likely generalizes effectively across both settings, and

most important, the novel public goods game.

This validation process becomes even more robust when multiple distinct but theoretically-

related datasets are available. Imagine dictator-game responses from $1, $5, $10, $20, $50, and
$100 games, all exhibiting offers slightly below half. Optimizing and validating across these multiple

settings reduces the risk of overfitting. With each new training data-generation process, it is less

likely that an arbitrary prompt will generalize in-sample.7 Thus, if the underlying relationship

governing these settings also holds for a novel target setting, the validated prompts should robustly

predict behavior there as well.

Yet, even with an effective validation method in place, a fundamental practical challenge re-

mains: identifying the initial set of candidate prompts. While our motivating example made this

step appear straightforward, selecting plausible prompts in more complex settings can be far less

obvious. We argue, and later demonstrate empirically, that economic and behavioral theories offer

a principled starting point.

3.3 Theory as guide towards generalizability

A core function of economics is to construct models that capture causal and generalizable re-

lationships that remain stable across environments. For example, the idea that humans make

reference-dependent utility choices is not specific to one particular economic environment, but has

been shown to broadly apply to decision-making under uncertainty (Kahneman and Tversky, 1979).

Conveniently, these are exactly the types of generalizable relationships that we would expect to

better predict human behavior in new settings when supplied to an LLM. Our approach is to narrow

the search space of possible prompts by grounding candidate prompts in such theories. By doing

so, we increase the likelihood of identifying prompts that we have prior reason to believe reflect

genuine, stable behavioral patterns. Without doing so, we risk dramatically underfitting and failing

even to accurately predict the training data.

Translating theory into a prompt is straightforward. A utility function that trades off one’s own

payoff against inequality might become “You value your own earnings but dislike outcomes where

you earn more than others.” A prospect theoretic model reasonably maps to “You are risk averse

7We do not offer empirical examples of optimizing over multiple training settings in the main text (only single
settings). However, Appendix A provides a comprehesive analysis, including an additional preregistered experiment,
demonstrating that our approach can be successfully applied to multiple training settings.
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in gains, risk seeking in losses, and probability weight the very likely and very unlikely outcomes.”

LLMs are increasingly capable of processing mathematical language directly, allowing for more

technical formulations.

Once a set of prompts is defined, we can optimize them against an appropriate sample of

relevant human decisions. This may involve searching for an optimal mixture of prompts, or

adding continuous parameters directly in a single prompt and adjusting them until the simulated

distribution aligns with the training data. From a machine learning perspective, the candidate set

of prompts defines the functional form of our hypothesis class, with theory guiding this specification

to effectively navigate the bias-variance tradeoff.8

This logic applies whether we aim to match the behavior of a population or a single decision-

maker. Suppose we want to predict whether a consumer will buy a product at a given price.

We have distinct training and validation data on their previous purchases of various products at

different prices. Here, we seek a single, flexible prompt that proxies for that individual. We might

define a set of prompts, such as “You have a budget of $X”, and search for the value of X that

best fits the training data. If that value is even moderately close to the consumer’s true constraint,

the prompt should generalize to similar future decisions.

We can also apply this idea to entire distributions of responses. An extensive theoretical and

empirical economic literature studies how people reason strategically (Arad and Rubinstein, 2012;

Camerer et al., 2004; Stahl and Wilson, 1994, 1995). In level-k models, for instance, individuals best

respond based on their beliefs about others’ levels of reasoning. In the 2
3 guessing game, inspired by

the Keynesian beauty contest (Keynes, 1936), players aim to pick 2
3 of the average number chosen

by the group (Nagel, 1995). If we had human data from such a game, we could construct a series of

prompts that specify different levels of strategic thinking (e.g., “You are a level-0 reasoner,” “You

are a level-1 reasoner,” etc.). We then identify the mixture that best fits the training distribution

and test whether it generalizes to other variants of the game (e.g., different values than 2
3). Unlike

the pricing example, here we are interested in identifying an entire sample of prompts that can

then be used to predict other distributions in new settings.

Of course, constructing and validating these prompts is not a perfectly specified problem. There

are various ways to translate a theory into natural language, and multiple theories may apply to

a given setting. The boundaries of a theory and the settings it plausibly governs are not always

well-defined. Nor can we guarantee that the data-generating processes of the training and testing

sets are either sufficiently similar or sufficiently distinct to yield reliable validation. Yet, as we will

show empirically, these challenges can be overcome in practice.

Ultimately, applying a prompt—or a set of prompts—to a new environment requires an un-

avoidable inductive leap. What we can do is try to make the leap explicit and interpretable. LLMs

are extremely good at following explicit, well-defined instructions. Because each prompt is a set

8One could imagine an “oracle” prompt akin to a perfect program, describing every preference, heuristic, and
belief update rule—allowing the LLM to accurately produce responses in all contexts for a person. In effect, our
approach is to identify portions of this oracle that are most relevant to the given training and testing data. Increasing
context windows suggest that such highly generalizable agents may be possible in the not-so-distant future.

13



of these natural language instructions, researchers can both evaluate performance and reasonably

assess its relevance for a new setting. This mirrors how economic theory is used more broadly with

real humans: it is tested against data, observed where it succeeds or fails, and cautiously extrap-

olated to settings just beyond current evidence. When a new tariff is proposed, for example, the

theory motivating the tariff is not known to be universally “correct” in a complex dynamic world

ex ante—it is a disciplined guess, shaped by assumptions and previous evidence. Theory-guided

prompts, validated across environments, bring the same kind of disciplined reasoning to LLM-based

predictions of human behavior.

3.4 A summary of the approach

We can summarize our approach into the following steps.

1. Select Training and Testing Data. Identify distinct samples of human-generated data

that are presumably generated by the same mechanisms as the novel target setting(s) of

interest. When possible, use multiple distinct datasets for both training and testing to increase

confidence and minimize the possibility of selecting spurious prompts.

2. Propose Theory-Driven Candidate prompts. Generate a broad set of prompts that are

plausibly consistent with the proposed theory (or causal mechanisms if known) related to the

training, testing, and novel settings.

3. Optimize prompts on Training Data. Optimize the given prompts to best match the

training data. This might involve selecting a mixture of prompts or adjusting trait parameters

to minimize some statistical distance from observed responses. Confirm that the optimized

sample outperforms the baseline LLM off-the-shelf on the training data.

4. Validate prompts on Testing Data. Apply the optimized prompts to the testing data

and evaluate their performance relative to the baseline LLM.

Broadly speaking, our approach provides a disciplined “trial run” to confirm whether a given

sample of AI subjects can reliably predict human behavior across multiple related settings. Similar

to applying economic models estimated from past data to inform predictions in new but structurally

similar environments, the success of our approach depends critically on identifying and leveraging

underlying stable behavioral relationships.

In Sections 4, we demonstrate empirically that our approach substantially reduces prediction

error relative to baseline LLM predictions. We emphasize that its two key elements—grounding

candidate prompts in economic or behavioral theories, and validating across distinct but related

datasets—each independently address critical pitfalls. Without theoretical grounding, optimized

prompts may fail to meaningfully improve even in-sample predictions; without validating across

multiple related settings, optimized prompts are prone to overfit a single training context.
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3.5 Methods for optimizing prompts in-sample

We briefly describe two methods for optimizing prompts with a given set of training data. The first,

the selection method, assumes we have a finite library of candidate prompts and selects (or mixes)

them to best fit the training data. We apply this method to the experiments presented in Section 4

with data from Arad and Rubinstein (2012). An early version of this idea was suggested by Horton

(2023), and several others have explored applications (Bui et al., 2025; Leng et al., 2024; Xie et al.,

2025). The second, the construction method, parametrizes a prompt template with numeric trait

dimensions and optimizes those parameters. An application of this novel method is presented in

Appendix A using data from Charness and Rabin (2002).

Selection Method. A finite set of unique candidate natural language prompts is first specified.

For each prompt θ ∈ Θ, the LLM is used to generate a predicted distribution P̂θ. Let P represent

the observed ground-truth human distribution. The objective is to solve

min
w

d
(
P,

∑
θ∈Θ

wθ P̂θ

)
subject to

∑
θ∈Θ

wθ = 1, wθ ≥ 0,

where d is a chosen distance measure (e.g., KL divergence or the mean absolute distance between

distributions). Once solved, these weights can be used to scale the appropriate mixture of prompts

(i.e., θ⋆) and applied to new settings.

Construction Method. Alternatively, a prompt template can be parameterized by numeric

trait variables. This is best illustrated with an example. Suppose ϕ1 and ϕ2 capture degrees of

self-interest and inequity aversion, respectively. For instance, the prompt could be:

θ(ϕ1, ϕ2) = “You weigh your own payoff with weight {ϕ1}, and you dislike creating
disadvantageous inequality at level {ϕ2}. Please respond accordingly.”

P̂θ denotes the distribution induced by the LLM under parameter vector θ = (ϕ1, ϕ2). Given an

observed human distribution P , the optimal parameters are found by solving minθ d
(
P, P̂θ

)
. In

practice, this can be solved using any derivative-free optimization algorithm, such as Bayesian

optimization or evolutionary algorithms.

Measuring Performance. The quality of any optimized prompt is evaluated by comparing its

predictive fit against that of a baseline LLM off-the-shelf without any additional prompting. Let

P̂θ⋆ denote the LLM’s distribution of responses under the sample of optimized prompts θ⋆, and let

P̂0 be the distribution from the LLM as a baseline. Given an observed human distribution P , our

improvement measure is

∆ = d
(
P, P̂0

)
− d

(
P, P̂θ⋆

)
.

A positive ∆ indicates that the prompt provides better predictive power than the baseline. When

we optimize a prompt, we seek those that yield ∆ > 0 on both the training and testing data. In
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rare cases where the baseline performance already matches the human distribution as a baseline

(∆ ≈ 0), further gains from adding prompts may be limited.9

Without loss of generality, the above methods and measurements can be applied simultaneously

to multiple training and evaluation settings. If there are multiple training samples (or even prompt

templates), then the optimization can be performed by averaging the distances. The same is true

for measuring the average ∆ across settings.

4 Predicting behavior in novel strategic games

Thus far, we have argued that theoretically-motivated prompts, validated on distinct but related

datasets, offer a promising approach for predicting human responses in entirely novel settings. To

empirically test the efficacy of our approach, we now turn to predicting human behavior in a set of

strategic games adapted from Arad and Rubinstein (2012)’s (AR) study of strategic reasoning.

We begin by briefly reviewing the level-k model of strategic reasoning that originally motivated

AR. This model provides plausible theoretical underpinnings linking the training, testing, and

novel games in this section. We then describe the structure of the original 11-20 money request

game and outline our procedure for constructing theoretically-motivated AI subjects, optimizing

their parameters on human data from AR’s original experiment, and validating their predictive

performance on distinct but related variants also studied by AR. Finally, we introduce an entirely

new set of games adapted from AR’s original setup but featuring distinct numeric ranges and a novel

participant sample recruited from Prolific. Agents are evaluated on their ability to predict human

behavior in these never-before-seen games. Although this section focuses on strategic-reasoning

games, the same procedure can be applied in other domains.

Although this section focuses on strategic-reasoning games, the same procedure can be applied

in any setting. In Appendix A, we replicate the process using the allocation games from Charness

and Rabin (2002), which explore social preferences. Two additional important differences in that

section are that we: i) optimize across multiple related settings rather than a single training setting,

and ii) utilize the construction method to build agents. Using a preregistered experiment with

entirely novel human responses as the target data, we find similar improvements.

4.1 Arad and Rubinstein (2012)’s 11-20 money request game

The level-k model posits that players differ in how many steps ahead they consider when forming

their strategies (Nagel, 1995; Stahl and Wilson, 1994, 1995). The model defines different types of

players, from level-0 to level-k. Level-0 players use some pre-defined arbitrary decision rule, while

level-k players (k ≥ 1) best respond assuming others are level-(k − 1) reasoners. Such a model

highlights the idea that players’ behavior depends not only on their decisions but also on their

beliefs about how other people think.

9This strong baseline performance is not necessarily a problem more generally. It suggests that the LLM’s off-the-
shelf predictive capabilities are already high.
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To measure the distribution of level-k thinkers in human populations, AR developed the 11-20

game. The instructions are:

You and another player are playing a game in which each player requests an amount
of money. The amount must be (an integer) between 11 and 20 shekels. Each player
will receive the amount he requests. A player will receive an additional amount of 20
shekels if he asks for exactly one shekel less than the other player. What amount of
money would you request?

This basic version of the game clearly maps players’ levels of reasoning to their choices. A natural

starting point is to choose 20 shekels. This maximizes the guaranteed payment and provides an

obvious starting point for level-0 thinking. Next, level-1 players, anticipating level-0 players, will

choose 20, and best respond by requesting 19 shekels to earn the bonus. Level-2 players, expecting

level-1 behavior, choose 18 shekels, and this pattern continues down to the minimum of 11. More

generally, a player choosing (20− k) shekels plausibly reveals themselves as a level-k thinker.

Interestingly, the 11-20 game does not have a pure strategy Nash equilibrium. The best response

to any choice greater than 11 is to undercut the opponent by 1. But if the other player chooses

11, also selecting 11 is strictly dominated by every other strategy. The top row of Table 1 shows

the unique symmetric mixed strategy Nash equilibrium for the game, with most of its density lying

between 15-17 (levels 3 to 5).

Table 1: Original Results from Arad and Rubinstein (2012)

Shekels Requested 11 12 13 14 15 16 17 18 19 20

Level-k L9 L8 L7 L6 L5 L4 L3 L2 L1 L0

Nash Eq. Prediction (%) 0 0 0 0 25 25 20 15 10 5

Basic (n = 108) (%) 4 0 3 6 1 6 32 30 12 6

Cycle (n = 72) (%) 1 1 0 1 0 4 10 22 47 13

Nash Eq. Prediction (%) 0 0 0 10 15 15 15 15 15 15

Costless (n = 53) (%) 0 4 0 4 4 4 9 21 40 15

Notes: This table reports the empirical PMFs for three versions of the 11-20 game from Arad and Rubinstein. In the
basic version of this game, two players each request a number between 11-20 shekels and they receive that amount.
If a player requests exactly one less than their opponent, they win their request plus a 20 shekel bonus. In the cycle
version, players also receive a 20 shekel bonus if they select 20 and their opponent selects 11. The costless version
is identical to the basic version, except that players receive 17 shekels if they select any amount other than 20. The
basic and cycle versions of the game share a unique symmetric mixed strategy Nash equilibrium, which is shown in
the first row. The unique mixed strategy Nash equilibrium for the costless version is shown in the 4th row.

Table 1 also shows that when AR tested this game on pairs of college students, they deviated

significantly from the Nash equilibrium (see row titled Basic). Most notably, 73% of participants

chose between 17 and 19 shekels, whereas only 45% of the density for the mixed strategy Nash is

on these values.

Table 1 also shows results from two additional variants of the game from AR. Both variants of

the game still involve two players selecting numbers between 11 and 20. They differ from the basic

version in their payouts (see Appendix B for the full instructions). In the cycle version, players

can earn a bonus of 20 shekels by undercutting the other’s request by exactly one or by selecting
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20 when the other selects 11. Although conceptually close to the basic version and with the same

Nash equilibrium, this extra payoff path creates the illusion of a cyclical best-response structure.

The costless version has the same bonus structure as the basic game, but with a different payout

for choices below 20. Here, requesting 20 yields 20 shekels outright, while choosing a lower amount

guarantees 17 shekels plus a 20-shekel bonus if the lower request is exactly one less than the other

player’s. It is comparatively “costless” to continue undercutting. This game induces a symmetric

mixed strategy Nash equilibrium that is more uniform across the choice set than the basic versions.

The human responses from these game variants, also from a similar sample of college students,

are noticeably shifted towards 18-20 shekels. AR attributes this to the increased salience and payoff

of selecting a higher number. In sum, AR concluded that the collective results from these three

experiments are best explained by a mix of strategic types consisting of level-0, level-1, level-2,

level-3, and random choosers.

The empirical human distributions from these three games comprise our training (the basic

version) and validation (the costless and cycle versions) data. The games are distinct enough such

that the human response distributions are different, but still all likely well-explained by similar

underlying human choice processes.

4.2 Optimizing AI subjects in-sample

We begin by eliciting the baseline AI’s response distribution (P̂0). We prompt GPT-4o to play the

basic version of the game 1,000 times without any additional instructions, setting the temperature

to 1. Figure 3 displays the results. The left panel shows the empirical PMF of the baseline AI

responses (red), along with the empirical human distribution P from AR’s original experiment

(vertical black lines). The baseline AI almost exclusively selects 19 shekels (87%), demonstrating

limited variability. Using the forward KL-divergence as d(·, ·) with the human distribution as the

reference, the difference between these distributions is d(P, P̂0) = 2.7.

Figure 3: Response distributions for the basic version of the 11-20 game
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Notes: This figure displays empirical PMFs for three samples playing the basic 11-20 money request game: human
subjects from Arad and Rubinstein (the vertical black lines in both panels), the off-the-shelf baseline (left panel),
and responses from our selected AI subjects based on the weights (right panel).
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Such a poor baseline result is unsurprising. In a related exercise, Gao et al. (2024) also elicit

responses from various LLMs playing the same 11-20 game. Even after applying diverse prompting

strategies, fine-tuning, and endowing agents with distributions of demographic traits, they simi-

larly find that LLMs strongly index on choosing 19 shekels. While this outcome is not inherently

problematic—19 shekels lies within the support of both the Nash equilibrium and the empirical

human distribution—it underscores a limitation: demographic prompts (and the other techniques

they employ) alone provide little leverage in predicting strategic human reasoning. They do not

provide any reliable, flexible program for the LLM to follow, nor do they allow for heterogeneity

within the simulated sample. In contrast, the level-k model implies that optimal predictions require

explicitly accounting for how individuals reason about others’ decisions. And because we know from

AR that there is likely a distribution of reasoning levels in their human sample, we should apply

various levels of reasoning to construct a heterogeneous sample of agents. This may, in turn, better

reflect the distribution of human strategic reasoning processes.

To operationalize the level-k reasoning explicitly, we construct a set of natural language prompts

(ΘStrategic) corresponding to varying levels of strategic reasoning. These candidate prompts, listed

in Table 2, specify how far ahead each AI subject reasons about the opponent’s decisions, effectively

encoding beliefs about others’ strategies.

We elicit response distributions P̂θ for each candidate prompt θ ∈ ΘStrategic by prompting

GPT-4o 100 times per prompt.10 We then employ the selection method to identify the optimal

mixture of prompts (P̂θ’s) that minimizes the absolute difference between the CDFs implied by

the empirical PDF of the human responses (P ). This distance can be minimized using simple

non-linear programming techniques. The weights w∗ corresponding to the optimal mixture appear

in the second column of Table 2.11

Most mass concentrates on two prompts: one that reasons between levels 1 and 3 (47%), and

another varying more broadly from levels 0 to 5 (34%). The remaining weight falls on more extreme

behaviors (random choices or the safest guaranteed option). This aligns closely with AR’s findings,

whose human subjects predominantly exhibited level-0 through level-3 reasoning or made random

choices.

Using these weights, we generate the sample θ∗ of 1,000 AI subjects by assigning each agent to

one of the 10 prompts with probability equal to its corresponding weight in Table 2. The resulting

empirical distribution of responses P̂θ∗ produced by this sample of 1,000 agents θ∗ appears in the

right panel of Figure 3 (blue). The improvement over the baseline AR is substantial: d(P, P̂θ∗) = 0.3

is 89% smaller than d(P, P̂0) = 2.7, demonstrating a strong in-sample fit with ∆ = 2.7 − 0.3 =

10We then elicit each AI subject’s responses using Chain-of-Thought prompting, which encourages step-by-step
reasoning before producing a final answer (Wei et al., 2024). Although this prompting strategy is unnecessary, it
offers a more intuitive mapping of what people might do when they reason. It also improved the performance of these
agents, although it was ineffective without using the prompts in Table 2. We implement this through two sequential
prompts. Prompt 1: {11-20 game instructions}. Reason out a few settings according to your personality and
how others might respond. Prompt 2: {11-20 game instructions}. You previously had the following thoughts:
{Response to prompt 1}. What amount of money would you request?

11See expectedparrot.com/content/6f58d11f-98cc-4de5-bb89-edcf78042d79 for the agents.
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Table 2: Proposed AI subject prompts and resulting mixture weights from the selection method

Persona Weight

You are generally a 0-level thinker—picking the option with the most guaranteed money. 0.065
You vary between a 0 and 1-level thinker. 0.000
You vary between a 1 and 2-level thinker. 0.000
You vary between a 0, 1, and 2-level thinker. 0.000
You vary between a 0, 1, 2, and 3-level thinker. 0.000
You vary between a 1, 2, and 3-level thinker. 0.469
You vary between a 0, 1, 2, 3, and 4-level thinker. 0.013
You vary between a 0, 1, 2, 3, 4 and 5-level thinker. 0.339
You randomly pick between lower numbers because you think that’s the best way to win. 0.114
You are Homo Economicus. 0.000

Notes: This table shows the set of prompts ΘStrategic used as input to the selection method. The right column shows
the optimized mixture weights w∗ that minimize the absolute difference between the CDFs of the human distribution
Ps and the distribution of responses from the AI subjects. Prepended to all the prompts is: You are a human being
with all the cognitive biases and heuristics that come with it. We also include an explanation in the prompts for
k-level reasoning for all prompts besides the random one: A k-level thinker thinks k steps ahead. A 0-level thinker
thinks 0 steps and would, therefore, just select the maximum amount that guarantees money.

2.4 >> 0.

4.3 Validation using game variants

To validate these prompts, we elicit their response distributions to the costless and cycle versions

of the game. Both games maintain the fundamental requirement of similar, but distinct data-

generation processes. They involve reasoning well-explained by level-k thinking, but feature payoff

structures and incentives that differ from the basic game, leading to notably shifted human response

distributions (see Table 1). Thus, effective predictions in these distinct games would serve as

a valuable indicator that our optimized AI subjects capture generalizable patterns rather than

merely replicating responses from the original training scenario.

We elicit responses from all 1,000 AI subjects in our optimized sample θ∗ for both the costless

and cycle versions of the game. As a benchmark for evaluating improvements in prediction (∆),

we also elicit responses from the baseline AI 1,000 times per game. Figure 4 presents these results,

comparing the empirical distributions from AR’s original human experiments (black lines) with

those generated by the baseline AI (red) and the optimized mixture of theoretically-motivated AI

subjects (blue).

Consistent with the basic version of the game and Gao et al. (2024), the baseline AI over-

whelmingly selects 19 shekels in both variants, a considerable divergence from AR’s human sub-

jects. In contrast, θ∗ is a far better predictor of both validation settings. In the cycle game,

the KL-divergence between the optimized AI and human responses is reduced by 71% relative to

the baseline (d(P, P̂θ∗) = 0.28 vs. d(P, P̂0) = 0.95). The costless game shows a similarly sub-

stantial improvement, with the KL-divergence decreasing by 84% (d(P, P̂θ∗) = 0.15 vs. baseline

d(P, P̂0) = 0.93).

θ∗ has effectively generalized to the validation data, data that was not used to construct its
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Figure 4: Response distributions for the cycle and costless versions of the 11-20 game
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Notes: This figure displays empirical PMFs for the costless (top row) and cycle (bottom row) variants of the 11-20
game. The columns correspond to the Baseline (red), the Optimized AI subjects (blue). Within each panel, the
empirical PMFs from Arad and Rubinstein are imposed in black. The KL-divergence between each human and the
AI response distribution is displayed in each panel. For both variants of the game, the selected AI subjects (blue)
are far closer to the human distribution than the baseline (red), even though the selected AI subjects are constructed
using only the basic version of the game.

mixture. We therefore gain confidence that these agents may better predict entirely new settings

that call for similar strategic reasoning.

4.4 Optimizing among atheoretical prompts

We now generate sets of arbitrary, atheoretical AI subjects using the basic version of the game,

which ultimately fail validation on the cycle and costless versions. These agents will offer striking

comparison with θ∗ when applied to entirely novel games in the next subsection. This exercise also

hightlights two potential pitfalls of AI simulations addressed by our approach: (i) that without the-

oretically motivated candidate prompts, optimization may fail entirely to even produce improved

in-sample predictive power over the baseline, (ii) that atheoretical candidate sets can be optimized

to effectively match particular samples of human data—even when such samples are obviously over-

fitting. The former is addressed by using samples of AI subjects grounded in plausible theoretical

mechanisms, and the latter is addressed by using training and testing data from distinct settings

(or training and testing both across many different settings).

To illustrate these points concretely, we introduce three new sets of candidate prompts, none

having any plausible relationship to strategic reasoning or the choices made in the variants of the

11-20 game. These are shown in Table A1 in the appendix. The first set consists of historical

figures (ΘHist);
12 the second has the 16 Myers-Briggs personality types (ΘMB); and the third set

12Cleopatra, Julius Caesar, Confucius, Joan of Arc, Nelson Mandela, Mahatma Gandhi, Harriet Tubman, Leonardo
da Vinci, Albert Einstein, Marie Curie, Ghengis Khan, Mother Teresa, Martin Luther King, Frida Kahlo, George
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comprises of 10 “Always Pick ‘N”’ agents (ΘN ), each of which is instructed to exclusively select a

given integer from 11 to 20.13 We apply the exact same selection procedure used in Section 4.2 to

find optimized weights for each set, using only the human data from the basic version of the 11-20

game.

Table A1 also shows the resulting weights. For the historical figures, nearly all weight (89.1%)

collapses onto Julius Caesar and a small remainder on Confucius (10.1%). In the Myers-Briggs set,

all weight concentrates on ENFP.14 While Julius Caesar is historically renowned for his strategic

military prowess, it is unclear how a generic reference to his name translates into a meaningful

prompt for this game. Likewise, Myers-Briggs constructs are widely considered to be pseudo-

scientific and meaningless.

Figure 5a shows that these two selected samples do not even offer a good in-sample fit. Each row

corresponds to a different variant of the game—the top row is the basic. The columns represent

different AI subject types, with the empirical PMFs from AR superimposed in black. The KL-

divergence between the distributions in each panel is shown in the top left of each panel. After

optimization, the in-sample KL-divergence between the selected AI subjects and the humans in

AR is d(P, P̂θ∗
Hist

) = 2.16 and d(P, P̂θ∗
MB

) = 2.36 for the historical figures and Myers-Briggs,

respectively. These are not much better than the baseline d(P, P̂0) = 2.7 and far worse than the

strategic AI subjects d(P, P̂θ∗) = 0.3.

When validated out-of-sample on the costless and cycle variants (Figure 5a, bottom rows),

these atheoretical personas perform even worse relative to the baseline. Both historical figures

and Myers-Briggs types simply default to selecting 19 shekels, severely diverging from the shifted

human response distributions.

The third atheoretical set (‘Always Pick ‘N”’) initially appears successful, achieving a perfect

in-sample fit (d(P, P̂θ∗
N
) = 0). However, this apparent success is misleading—these personas offer no

flexibility. Each agent always selects its assigned integer, between 11 and 20, regardless of setting

changes, clearly overfitting to the training data. Unsurprisingly, when validated on the human

data from the new variants, these largely fail to improve over the baseline, merely reproducing

their training distribution and failing to capture shifts in human responses (rightmost column of

Figure 5a).

Figure 5b succinctly compares these results with the optimized mixture of strategic AI subjects

and the baseline, marking the best-performing sample in each setting. Only θ∗ consistently outper-

forms the baseline and shows strong generalization across settings (∆ > 0 in all cases). All three

atheoretical samples are strictly worse than the baseline on both validation games.

These results underscore the importance of theory-driven candidate prompts and validation

across related but distinct settings. We next show that failure to pass validation bodes poorly for

predicting responses in new settings.

Washington, Winston Churchill, Mansa Musa, Sacagawea, Emmeline Pankhurst, and Socrates.
13These agents all take the form of “You alwanys pick N” for N ∈ {11, . . . , 20}
14ENFP is Extraversion, Intuition, Feeling, Perceiving (wikipedia.org/wiki/Myers-Briggs_Type_Indicator).
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Figure 5: Response distributions for the 11-20 games with atheoretical AI subjects
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Notes: (a) shows empirical PMFs for three variants of the 11-20 game from Arad and Rubinstein, compared to
selected atheoretical AI subject samples optimized using only the basic version. Rows correspond to game variants,
and columns correspond to AI subject types, with human data superimposed in black. Historical figures and Myers-
Briggs subjects poorly match human distributions across all variants. The “Always Pick ‘N”’ set matches human
data perfectly in-sample but fails to generalize. (b) shows KL-divergence between human and AI responses for
games from Arad and Rubinstein. The lowest KL-divergence in each panel is indicated by a checkmark. Only the
strategically-selected AI subjects consistently improve over the baseline in all games.

4.5 Predicting the new games

We now introduce the four novel games which provide us with an unequivocal novel testing ground

for the AI subjects we have explored so far. Three of the games parallel AR’s games in strategic

structure but modify the implementation: participants choose between 1 and 10 (rather than 11

and 20) and earn points instead of shekels. The instructions for the “basic” version of this 1-10

game highlight these differences:

You are going to play a game where you must select a whole number between 1 and 10.
You will receive a number of points equivalent to that number. After you tell us your
number, we will randomly pair you with another player who is also playing this game.
They will also have chosen a number between 1 and 10. If either of you selects a number
exactly one less than the other player’s number, the player with the lower number will
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receive an additional 10 points.

We adapted the costless and cycle variants similarly. The fourth “1-7 game” introduces an entirely

new variant with a restricted choice set (see Appendix B for the full instructions for all games).

Of the 1,000 participants we recruited from Prolific, 955 passed the validation check and were

randomly distributed across the four games. To ensure incentive compatibility, participants were

paid $1 for completion and had a 10% chance of receiving the dollar value of their earned points

from the single game they played. We preregistered our complete experimental design, including all

prompts for both the baseline and selected AI subjects—the latter using only the weights optimized

on the basic 11-20 game. We have θ∗, θ∗
Hist, θ

∗
MB, and θ∗

N , and the baseline play each game. All AI

subject responses are elicited using GPT-4o with the temperature set to 1. All AI subject samples

played these games before the human subjects’ data was collected. To the best of our knowledge,

these variants have never been studied and, therefore, should not be in the LLM’s training corpus.

Figure 6 presents the responses of all subject samples—both human and AI—across the four

novel games. Panel (a) plots empirical distributions for human subjects (top two rows) and AI

samples (remaining rows). Responses from our Prolific sample (black) differ notably from AR’s

original results (grey, shifted down by 10 for ease of comparison). Specifically, in the basic 1-10

game, the Prolific sample’s distribution is more uniform, with a modal choice at 8 rather than

AR’s mode at 7; in the costless variant, Prolific responses peak at 10 instead of AR’s 9 and 8; and

the cycle variant yields a more uniform distribution relative to AR’s original sample. The newly

introduced 1-7 game lacks an analogous comparison in AR, but the modal response is 5, and most

other choices are on 4, 6, and 7.

This is somewhat surprising. Both sets of games have the same fundamental strategic structure.

The arguments Arad and Rubinstein make for the fact that the 11-20 games are a good tool for

measuring distributions of strategic reasoning in a human population, all apply to the 1-10 games.15

Ten, the highest number, is still a natural choice for level-0, nine, the second highest number, is

a natural choice for level-1, and so on. One might reasonably expect the results from the original

paper to be excellent predictors of the new games. And they are still better predictors for the new

games than their Nash equilibria.

Moving down Figure 6, the remaining rows show response distributions from various AI samples.

Whether or not the AI sample successfully passed validation on the costless and cycle games is

indicated below the sample name. Panel (b) reports the KL-divergence between the Prolific data

and each AI-generated distribution. The baseline AI (red) generally provides a poor fit to the

Prolific data, frequently concentrating choices on 9. The notable exception is the 1-7 game, where

it disperses responses across several choices.

Critically, the optimized sample of strategically-motivated AI subjects robustly generalizes to

these novel settings.16 These being the only sample of AI subjects which were validated on all

of the data from AR’s original games (the atheoretical samples failed to improve in at least one

15See pages 2 and 3 in their paper for the list of 6 aspects.
16These results hold across several alternative preregistered distance metrics (see Figure A8).
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Figure 6: Analysis of novel 1-10 games: response distributions and KL divergences

(a)

(b)

Notes: (a) plots human and AI response distributions for the four games. Prolific data are in black superimposed on
all other distributions. Arad and Rubinstein data occupy the second row, shifted down by 10 to fit the 1-10 format.
The remaining rows show the various AI subject samples named in the right-hand column. (b) Reports the KL
divergence between Prolific data and each other distribution. The minimum in each panel is flagged by a checkmark.
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of these games). Panel (b) summarizes KL-divergence across games: these strategically-informed

agents consistently outperform the baseline AI (which primarily selects 9) by at least 53% in every

variant. Especially notable is the strategic agents’ near-perfect alignment in the entirely novel

1-7 game (KL-divergence = 0.16). Indeed, the strategically motivated AI even outperforms AR’s

original human data in predicting our Prolific participants’ responses in the basic and cycle games.

In stark contrast, atheoretical AI subjects fail to generalize. All arbitrary samples predict the

human responses no better than the baseline in at least two of the four games (including Myers-

Briggs in the costless games, which is unchanged). The “Always Pick ‘N”’ agents are particularly

nonsensical as they are solely instructed to select integers between 11 and 20, highlighting a severe

case of overfitting to a particular data-generating process.

Overall, these results underscore our central claim: carefully identifying theoretically-grounded

candidate prompts and validating their predictive utility in related but distinct contexts can sub-

stantially enhance predictive accuracy in novel, unseen settings. Only agents subject to this ap-

proach generalized to the novel strategic games.

5 External validity in pre-committed novel settings

We now turn to making guarantees about inference in novel settings. This is made possible when we

have a pre-committed family of settings from which we can randomly sample. The setup is similar

to that of Allcott (2015) and Hotz et al. (2005), where treatment effects from various “sites” are

used to evaluate the external validity of a given intervention at the population level. However,

they assume a common underlying intervention—analogous to a single setting in our framework—

across all sites. And when there are heterogeneous interventions, only special instances with strong

additional assumptions allow for appropriate inference. The following requires no such assumptions.

Let X = {x1, . . . , xM} denote the pool of candidate settings for which we wish to make pre-

dictions. P (y|x) denotes the true human response distribution for y ∈ Y—the set of allowable

responses. We define a predictive distribution for some flexible model θ—an AI model, a theoret-

ical model, etc.—as P̂θ(y|x). For a given setting x, the expected log-likelihood that the human

distribution could have been produced by θ is

ℓ(x; θ) = Ey∼P (·|x)
[
log P̂θ(y|x)

]
Then the comparative predictive power of two models θ′ and θ′′ can be measured via

Λ(x) = ℓ(x; θ′)− ℓ(x; θ′′) (1)

Positive Λ(x) means that θ′ assigns more probability mass to the human responses than θ′′ for x.

Averaging over all settings in X yields the population estimand

Λ̄ = Ex∼π

[
Λ(x)

]
, (2)
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where π is some distribution over the full support of X. A positive Λ̄ is interpreted as evidence

that θ′ is, on average, more predictive of human behavior than θ′′ across the entire population of

X.

Suppose we observe a sample S = {s1, . . . , sn} ⊂ X and, for each s ∈ S, independent human

responses ys = (ys,1, . . . , ys,ms). Identification to estimate equations 1 and 2 from these samples

requires the following assumptions.

Assumption 1. (Unconfounded settings). The observed settings S = {s1, . . . , sn} are randomly

sampled from distribution π over X such that π(x) > 0 for all x ∈ X.

Assumption 2. (Random assignment and within-setting independence). Humans are randomly

assigned to settings in S. Human responses within a setting are independent draws from P (y | s).

Assumption 3. (Positivity and finite second moment). Whenever P (y | x) > 0, then P̂θ′(y | x) > 0

and P̂θ′′(y | x) > 0. Moreover, Ex∼π

{
Ey∼P (·|x)

[
(log P̂θ′(y | x)− log P̂θ′′(y | x))2

]}
< ∞.

The first two assumptions are basically identical to the assumptions of unconfounded location

and random assignment in Hotz et al.. The first part of Assumption 3 is similar to the covariate

overlap assumption in causal inference; without it, some observed responses would have log 0. The

second portion of Assumption 3 is a standard finite second-moment condition.

For every setting s ∈ S, define the sample analogue to equation 1 as:

Λ̂s =
1

ms

ms∑
j=1

[
log P̂θ′(ys,j | s)− log P̂θ′′(ys,j | s)

]
. (3)

Aggregate across settings to produce the sample analogue to equation 2:

Λ̄S =
1

n

∑
s∈S

Λ̂s. (4)

Proposition 1 (Unbiasedness and asymptotic normality). Suppose Assumptions 1–3 hold. Then

E[Λ̄S ] = Λ̄ and
√
n (Λ̄S − Λ̄)

d−→ N
(
0, σ2

)
,

where σ2 = Varx∼π

[
Λ(x)

]
+ Ex∼π

[
1
mx

Vx

]
and Vx = Vary∼P (·|x)

[
log P̂θ′(y | x)− log P̂θ′′(y | x)

]
.17

Notably, this does not rely on a large sample size of humans for any particular setting. The

asymptotic variance in Proposition 1 decomposes into two conceptually distinct parts. The first

17Proof. (Unbiasedness). For any setting s, Assumption 2 implies E
[
Λ̂s | s

]
= Λ(s). Hence E

[
Λ̄S | S

]
=

1
n

∑
s∈S Λ(s). Taking expectation over the i.i.d. draw of the settings (Assumption 1) yields E[Λ̄S ] = Λ̄. (Asymptotic

normality). The random variables {Λ̂s}s∈S are i.i.d. across settings with finite variance Var(Λ̂s) = Varx∼π[Λ(x)] +
Ex∼π

[
1

mx
Vx

]
< ∞, where the decomposition follows from the law of total variance and the independence of hu-

man draws within each setting. Because the moment condition guarantees Vx < ∞, the central-limit theorem gives
√
n
(
Λ̄S − Λ̄

) d−→ N
(
0, σ2

)
. (Regularity). Assumption 3 ensures log P̂θ′(y | x) and log P̂θ′′(y | x) are finite, so all

moments used above exist.
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term, Varx∼π

[
Λ(x)

]
, reflects heterogeneity in model performance across settings. The second term,

Ex∼π

[
1
mx

Vx

]
, is sampling noise that arises because we estimate Λ(x) with a finite number mx of

human draws. As long as mx ≥ 1, this component is finite. Consequently, once at least one human

observation is obtained per game, the precision of Λ̄S is governed primarily by n because each setting

contributes only a single observation Λ̂s. This also means there is no within-cluster correlation left to

adjust for, so the usual sample variance across settings already yields valid standard errors without

needing to adjust for clustering. As such, standard z-tests or Wald confidence intervals follow

immediately when estimating equation 4 using the sample variance: σ̂2 = 1
n−1

∑
s∈S

(
Λ̂s − Λ̄S

)2
as input for standard error calculations.

Crucially, this construction imposes no assumption that all settings share a single data-generating

process. The settings can be an arbitrarily eclectic mixture—public-goods games, dictator games,

or entirely unrelated tasks. Inference remains valid even when the model’s performance differs

sharply across sub-domains; the variability of estimates widens (or narrows) in proportion to the

observed heterogeneity.

The remainder of this section is devoted to implementing the above framework on a pre-

committed family of strategic games. This set comprises 883,320 novel and unique permutations

of Arad and Rubinstein’s money request game. We randomly sample 1,500 of these games for hu-

man subjects and AI subjects to play in a preregistered experiment. We use this data to estimate

the relative capacity of different AI subjects to predict human responses at scale. In particular,

we return to the strategic sample of optimized level-k AI subjects presented in Table 2 from Sec-

tion 4. We compare these agents’ ability to predict human responses across the 1,500 games to

the baseline AI. We also calculate the unique symmetric Nash equilibria mechanically produced

by a slightly modified version of the procedure in (Harsanyi and Selten, 1988) for each game and

compare these theoretical predictions to the AI subjects. Because the games (and human subjects)

are randomly sampled from the population according to a known distribution, confidence intervals

over the comparisons are valid over the 883,320 games.

5.1 A pre-committed family of strategic games

The pre-committed family of games generalizes the original 11-20 money request game by parametriz-

ing it into six independently variable components.18 Each symmetric game preserves the core

structure: two players simultaneously select a whole number between specified bounds, earning

guaranteed points based on their individual choice plus a potential bonus determined by both play-

ers’ choices. The six parameters—lower bound, upper bound, gap to achieve the bonus, bonus

size, rule to award guaranteed points, and bonus rule—are detailed in Table 3. The table’s upper

portion enumerates the possible values for five parameters, while the bottom section presents the

eleven possible bonus rules that constitute the sixth parameter.

To illustrate how these parameters translate into actual games, consider the following example.

If the lower bound is 5, upper bound is 14, gap is 6, bonus size is 10, points rule is # - 2, and bonus

18(Alsobay et al., 2025) similarly generate public goods games across 20 parameters.
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Table 3: Game Parameters and Possible Values

Parameter Possible Values Description

Lower Bound {1, 2, . . . , 20} The minimum number players can select
Upper Bound lower bound + {4, 5, . . . , 20} Maximum number players can select
Bonus Size {1, 2, . . . , 20} Points awarded when bonus condtition is met
Gap {1, 2, 3, 4} Difference parameter used in certain bonus rules
Points Rule {# - 2, # - 1, #, # + 1, # +

2, costless - 2}
Rules to award guaranteed points (# is number participants select)

Bonus Rules (When additional points are awarded)

1. Player gets bonus if they select a number exactly gap less than the opponent
2. Player gets bonus if they select a number exactly gap more than the opponent
3. Player gets bonus if the difference between their number and the opponent’s is exactly gap
4. Player gets bonus if the difference between their number and the opponent’s is more than gap
5. Player gets bonus if their number is equal to the opponent’s
6. Player gets bonus if they select a number different from the opponent’s
7. Player gets bonus if sum of their number and the opponent’s is even
8. Player gets bonus if sum of their number and the opponent’s is odd
9. Player gets bonus if sum of their number and the opponent’s equals the upper bound
10. Player gets bonus if sum of their number and the opponent’s is less than the upper bound
11. Player gets bonus if both players select the lower bound

Notes: The counts above treat each unique combination of the six parameters—lower bound, number of choices,
bonus size, bonus rule, gap, and points rule—as a distinct game. The näıve Cartesian product of all parameter values
yields 20×16×4×20×6×11 = 1,689,600 combinations. However, seven of the eleven bonus rules do not use the gap
parameter; for these rules, varying the gap value produces mechanically identical games. Collapsing such duplicates
leaves 883,200 unique games in the population. All sampling and inference in this paper are defined relative to this
deduplicated set.

rule is the 3rd rule, participants see:

You are going to play a game where you must select a whole number between 5 and 14.
A player will receive a number of points equivalent to that number minus two. After
you tell us your number, we will randomly pair you with another Prolific worker who is
also playing this same game. They will also have chosen a number between 5 and 14.
Both players will receive an additional 10 points if their requested numbers differ
from each other by exactly 6. What number would you request?

The full factorial product of this parameterization yields 1,689,600 games. However, many

of these games are mechanically identical because seven of the bonus rules do not use the gap

parameter. Accounting for these duplicates, we have 883,320 unique games in total—the pool of

candidate settings X. This family includes the original Arad and Rubinstein game as a special

case (lower bound 11, upper bound 20, bonus 20, gap 1, points rule #, first bonus rule). Besides

the original 11-20 money request game, to the best of our knowledge, all of these games are novel.

They cannot be found in GPT-4o’s training data—the model we use to generate AI responses.

Notably, the games exhibit dramatic variation in strategic difficulty. With bonus rules like

number 6 (different numbers), most players receive bonuses even with random selection. Conversely,

rule 9 (sum equals upper bound) often makes bonuses impossible when the lower bound exceeds

half the upper bound. This heterogeneity creates a particularly stringent test of agents’ predictive

power, as successful generalization demands flexibility.

To construct the analysis set S, we randomly sampled 1, 500 games from X. The intended

29



design was uniform sampling across all 883, 320 unique games. A very minor miscalculation in the

deduplication process caused small deviations from uniformity: the seven bonus rules that do not

use the gap parameter were each sampled with probability ≈ 0.086, while the four gap-using bonus

rules were each sampled with probability ≈ 0.010.19 For points rules, the “costless” variant was

sampled with probability ≈ 0.095, and each of the remaining rules with probability ≈ 0.18. All

other parameters were sampled uniformly. Consequently, the estimand in this section is technically

the expected relative predictive power of the models over the 883, 320 games under this slightly

non-uniform distribution. However, robustness checks will later show that the relative predictive

power of the models is not particularly sensitive to the points rule or bonus rule indicating that

this minor departure from uniformity has no substantive effect on our conclusions.

5.2 Eliciting AI subject responses

We generate AI responses for each of the 1,500 games in the set S using two distinct samples of AI

subjects. As a baseline sample, we prompt GPT-4o at temperature 1 to independently play each

game 100 times, without providing any additional instructions. For the optimized strategic sample,

we use the same 10 prompts from Table 2, which were optimized using human experimental data

from Arad and Rubinstein. To generate this strategic sample, we proportionally scale the optimized

persona weights to create a total of 100 AI subjects, each of which plays each game exactly once

using GPT-4o (the “strategic” sample of AI subjects hereinafter).20

This procedure produces an empirical distribution for both the strategic level-k sample P̂θ∗ and

the baseline AI P̂0 for every game s ∈ S. These samples correspond exactly to those described

in Section 4, differing only in the number of agents—here, each distribution is generated with

100 agents rather than 1,000. In total, the elicitation procedure produces approximately 300,000

individual AI subject responses.

5.3 Harsanyi-Selten Nash equilibria as a benchmark

A key limitation of our statistical framework is that comparing the predictive power of different AI

simulations provides no absolute benchmark for how well these samples predict human responses in

general. Thus, we require a suitable theoretical or statistical benchmark for a more comprehensive

analysis. However, due to the scale and heterogeneity of our games, several appealing benchmarks

are impractical.

Ideally, we would apply the standard level-k model from Section 4 to generate predictions

across these games. Unfortunately, no existing mechanical method reliably identifies which choices

19This miscalculation was only noticed after the experiment. As such, the preregistration (urlaspredicted.org
#241394) states that we were sampling from a pre-committed family of 1,538,831 games. The only difference is that
the correct number is 883, 320 games. There random sample of 1, 500 was still chosen before the experiment and
is available here: https://www.expectedparrot.com/content/db984e24-2810-4b21-be4e-91efde378e21, which is
the same link given in the preregistration.

20A very small fraction (less 0.1%) of the AI subject responses were invalid due to stochasticity inherent to the LLM
at temperature 1. Following our preregistered analysis plan, we discard these invalid responses without resampling.
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correspond to specific levels of reasoning across such diverse contexts. For example, the “obvious”

choice for a level-0 player is not always the highest number—particularly when bonuses are large,

bounds are tight, and the bonus rule involves selecting number 11. Consequently, higher-level

reasoning does not follow the intuitive progression observed in simpler or more conventional settings.

Alternative hierarchical models, such as those proposed by Camerer et al. (2004); Stahl and

Wilson (1994, 1995), partially address this issue by assuming level-0 players choose uniformly at

random. However, these models still require specifying an ex-ante distribution over reasoning levels.

The choice of distribution parameters, such as λ for the Poisson model in Camerer et al., is crucial

for predictive accuracy, yet no clear method exists for selecting appropriate values in our context.

Indeed, even within Camerer et al., parameter estimates vary considerably across a relatively small

number of different games. Given the greater heterogeneity of our game set S, we lack a sufficiently

representative sample from which to estimate such a distribution.

Another seemingly attractive alternative would be to follow the approaches of Fudenberg and

Liang (2019) or Hirasawa et al. (2022), who train a bespoke supervised machine-learning model

on past game data to predict responses. But, this method suffers from the same problem as the

hierarchical models: it also relies heavily on having access to a large and representative dataset,

which we currently do not possess.

We instead use symmetric Nash equilibria as our theoretical benchmark. This choice offers

several advantages: (i) this solution concept exists for any symmetric two-player game with a finite

number of actions (?); (ii) it can be computed systematically across all game types in our dataset;

and (iii) all games are played independently by participants (AI and human), making symmetry

a natural assumption. It suggests a “consistent common belief” across the population (Stahl and

Wilson, 1994).

Since many games have multiple symmetric Nash equilibria, we require a systematic method

to select a single equilibrium prediction. Indeed, one game in S has 10051 symmetric equilibria.

Unfortunately, there is no universally agreed-upon criterion for selecting the “optimal” symmetric

equilibrium across all games (Camerer, 2003; Tadelis, 2013).

We employ a slightly modified version of the equilibrium selection procedure developed by

Harsanyi and Selten (1988), which provides a principled approach grounded in stability and focal-

point considerations. It is particularly well-suited for our analysis for several reasons. First, it

guarantees the selection of a Nash equilibrium for every game in our dataset and can be slightly

modified to ensure symmetry. Second, this procedure prioritizes equilibria that are stable in the

sense of Schelling (1960), specifically favoring equilibria that are either payoff dominant (maximizing

joint welfare) or risk dominant (robust to strategic uncertainty). This is appealing because many

of the games—particularly those with bonus rules numbered 5 and 11—have clear equilibria that

are both payoff and risk dominant. Extensive literature documents that humans tend to select

such equilibria in one-shot symmetric two-player games (Camerer, 2003). Third, the procedure is

mechanical, so it does not affect statistical inference.

The Harsanyi-Selten procedure operates through a multi-stage filtering process, progressively
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narrowing the set of candidate equilibria. The procedure first identifies all Nash equilibria, then

applies filters based on Pareto efficiency, symmetry requirements, and risk dominance, and finally

employs tracing methods to resolve any remaining ties. Complete mathematical details of our

implementation are provided in Appendix C.

To implement this, we first calculate all Nash equilibria for the 1,500 games in set S using

open-source software (Savani and Turocy, 2025). We then apply the Harsanyi-Selten procedure to

each game’s set of equilibria, producing a single equilibrium distribution P̂Nash per game. This

produced sets of equilibria for 1487 games.21 Of these 1487 games, 467 have unique symmetric

equilibria. The selection procedure was unnecessary in these cases. Among the remaining games

with multiple symmetric equilibria, the procedure selects payoff-dominant equilibria—those Pareto

superior to all alternatives—in 328 games, and risk-dominant equilibria in 1026 games. Finally,

59% of the equilibria selected by the Harsanyi-Selten procedure involve pure strategies, with the

remainder employing mixed strategies.

5.4 Eliciting human responses

We collected human data from a sample of 4,500 Prolific workers using a custom online survey

platform. This human data supplies ys for each game s ∈ S, with which we can then estimate

the relative predictive power of the different AI models and equilibria. The entire experimental

design, all AI subject responses, and the statistical analysis in this section were preregistered before

collecting the human subjects’ data. Each prolific worker was randomly assigned one of 1,500 the

sampled games such that each game had approximately three human players.

The survey flow began with a very simple attention check. Next, the survey introduced each

worker to the rules of their game with another comprehension check, asking participants to calculate

the correct number of points for a hypothetical outcome of their assigned game. They were then

asked to make their strategic choice. Participants received a fixed payment of $0.50 for completing

the survey. To align incentives with the game structure, they were also eligible for randomly awarded

performance-based bonus payments, with each point earned in their assigned game converted to

US dollars at a 1:1 rate.

After a preregistered filtering based on the first attention check, removing participants who

timed out on our platform, or those who selected a final number outside of the range of their game

or did not select a whole number, our final sample size was 4249, each playing one of the 1490

unique games. These 1490 games comprise the sample S we use for analysis.

5.5 Estimation

We estimate the relative predictive power of the different AI samples and the theoretical benchmark

in three steps. These are: (i) construct smoothed predictive distributions for every model in every

sampled game; (ii) evaluate the strategic sample of AI subjects compared to each other model with

21In fewer than 1% of the games, degeneracy issues prevented the code from converging. Following our preregis-
tration, we discard these games in our analysis when comparing the equilibria to the strategic AI subjects.
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per-game log-likelihoods and their paired differences; (iii) attach sampling-error bounds that are

externally valid for the full population of nearly one million games. We address these steps in turn.

Many of the Harsanyi-Selten equilibria—mainly those pure strategies—and to a lesser extent the

samples of AI subject place zero probability on strategies that humans sometimes take. For these

models, the product of all likelihoods would be zero, making the log-likelihood −∞ and violating

Assumption 3. Dropping these games would heavily bias the results away from any pure strategy

equilibria or the samples of AI subject where the agents mostly pick a single action—even when

most people do select that action.

To address this, we follow the convention in game theory where players are assumed to follow

the equilibrium strategy with probability 1 − ε and choose uniformly at random the remaining ε

of the time. Mathematically, this is: P̃ (a | s) = (1 − ε)P (a | s) + ε
Ks

, where Ks is the number of

feasible actions in game s. Setting ε = 0.2 implies that players follow their model 80% of the time

and choose uniformly at random the remaining 20%.

This additional smoothing is not without both empirical and theoretical support (McKelvey and

Palfrey, 1992, 1995). In the original 11-20 money request game, Arad and Rubinstein estimate that

32% of participants choose uniformly at random in their best fitting model. In Stahl and Wilson,

at most one out of 40 participants is best explained by random choosing. In a larger meta-analysis

of several dozen strategic games, Camerer et al. estimate that a Poisson cognitive hierarchy model

with approximately 20% of the probability mass on players choosing uniformly at random best fits

their data. As such, we report all main results with ε = 0.2 but provide robustness checks with

ε ∈ {0.05, 0.1, 0.3} in the appendix.

For each game s, we calculate Equation 3 four times. In all four cases, θ′—the numerator of

the log-likelihood ratio Λ̂s—is the sample of strategic AI subjects (P̂θ∗). The denominator θ′′ is

one of four reference distributions: i) the baseline AI (P̂0), ii) the Harsanyi-Selten Nash equilibria

(P̂Nash), iii) a uniform distribution over all possible strategies (P̂Unif ), or iv) a randomly selected

pure strategy distribution (P̂Pure). To be clear, this means all comparisons are made with respect

to the strategic sample. We then take the average across the games to estimate Λ̄S from Equation 4

for each comparison.

Proposition 1 holds for each of these sample averages. Games were drawn via a known distri-

bution from the population X (Assumption 1). Human respondents were randomly assigned these

games, and their answers were independent (Assumption 2). Smoothing guarantees the first part

of Assumption 3, and the possible human responses form bounded, discrete distributions—so the

required second-moment condition is satisfied. This means that confidence intervals must cover

appropriately, and the results are externally valid for the population of all 883,320 games.

We report bootstrapped confidence intervals for the four ΛS values and provide robustness

checks with Wilcoxon and random-sign permutation tests. We also report the proportion of games

for which the strategic AI subject is the best predictor—i.e.
∑

s∈S 1{Λ̂s > 0}/|S|—with its exact

Clopper-Pearson 95% interval. Such intervals are valid following a nearly identical argument leading

to Proposition 1.
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5.6 Results

The top panel of Figure 7 shows the estimation results. Each panel provides the histogram of the

game-by-game log-likelihood ratios (Λ̂s) for each comparison. The vertical black line indicates the

mean of the log-likelihood ratios (Λ̄S) and dashed red lines indicate the 95% bootstrap confidence

intervals.

Figure 7: Predictive power of Strategic AI subjects compared to other models (ε = 0.2)
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Notes: The top panel shows the distribution of the log-likelihood ratios for each comparison. The vertical black line
indicates the mean, and dashed red lines indicate the 95% bootstrap confidence intervals. The bottom panel shows
the proportion of games for which the sample of strategic AI subjects is the best predictor. Standard errors are 95%
Clopper-Pearson intervals.

With ε = 0.2, the strategic sample of AI subject are, on average, significantly more predictive

than any of the other reference distributions (p < 0.001 for all comparisons). These differences

are substantial. Starting with the leftmost panel, across all human observations in the dataset the

strategic sample of AI subjects achieves an average per-observation likelihood ratio of e1.23 = 3.41

in favor of the model, relative to the baseline AI. That is, the likelihood of the observed human

data under the strategic AI subject model is, on average, 3.41 times larger per observation than

under the baseline. Moving right, the corresponding average likelihood ratios are e0.89 = 2.44

against the Harsanyi–Selten-selected equilibria—This predictive edge is extant for both pure and

mixed strategy equilibria (Table A5)—and e0.59 = 1.81 against the uniform reference distribution.

In the rightmost panel, the advantage over the random pure-strategy benchmark is largest, with

an average per-observation likelihood ratio of e4.15 = 63.47. These results are robust to Wilcoxon
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and random-sign permutation tests (Table A5).

The bottom panel of Figure 7 shows the proportion of games for which the sample of strategic

AI subjects is the best predictor—i.e.
∑

s∈S 1{Λ̂s > 0}/|S|. The results are consistent with the

top panel. The theoretically-motivated sample of strategic AI subjects better predicts the human

responses in more games than any other model. This proportion is large and significant for the

baseline (0.715). It is smaller, although still greater than 50%, for the Harsanyi-Selten Nash

equilibria (0.622).

Tables A3, A4, and A6 provide the same statistical analyses for ε ∈ {.05, 0.1, 0.3}, respectively.
The above results are robust to these additional sensitivity checks. Λ̄S > 0 for all comparisons, and

the proportions of games for which the optimized AI subject is the best predictor are all greater

than 50%. Tables A8, A9, A10, and A11 further show that the relative predictive power of the

models is not particularly sensitive to the bonus or points rule. The strategic AI subjects are almost

universally superior.

Importantly, the strategic AI subjects also demonstrate impressive predictive power in the

absolute. Without any smoothing, 24% of human respondents selected the strategy for which the

optimized AI subject assigns the most density. Given that the number of possible strategies per

game varied evenly between 5 and 20, this is notable. Furthermore, 53% of human respondents

selected one of the top three strategies for which the strategic AI subject assigns the most density.

And maybe most surprisingly, for 86% of games, all human respondents selected a strategy in

support of the strategic AI subject.

6 Discussion

The great promise of AI subjects lies in their potential to accurately predict human behavior in

novel settings. Realizing this capability could transform social science research and public policy.

It could provide the social science equivalent of a lab bench in the physical sciences: an accurate,

scalable playground to test ideas before large-scale and expensive implementation with humans.22

Yet, as with the current state-of-the-art foundation models, AI subjects are not yet reliable enough

to be used in this way out of the box.

In this paper, we explored an approach to address this shortcoming. Our approach relies on two

key principles: (i) grounding candidate AI subjects in theories expected to drive human behavior

in the target setting, and (ii) optimizing and then validating AI subjects in distinct but related

settings presumed to share underlying behavioral mechanisms. Without theoretical grounding,

optimized prompts may fail to meaningfully improve even in-sample predictions. Without vali-

dation across distinct but related datasets, optimized prompts are prone to overfit a particular

data-generating process. Just as economists carefully extend established theories to novel policy

contexts—relying on accumulated empirical validation rather than absolute certainty—optimizing

22This could be even more powerful given the often observed researcher inability to accurately predict results of
their own experiments (DellaVigna et al., 2019; Duckworth et al., 2025; Gandhi et al., 2023, 2024; Milkman et al.,
2021, 2022).
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theoretically-grounded AI subjects to match samples of human data, and then validating them in

distinct but related settings, provides a principled foundation for predicting humans in new settings.

The improvements in predictive power yielded by this approach are substantial. In four novel

and preregistered strategic games derived from Arad and Rubinstein’s 11-20 money request game,

theoretically motivated AI subjects, optimized and validated through our methodology, reduced

prediction errors by approximately 53-73% compared to baseline AI predictions. Remarkably,

these theoretically-grounded AI subjects predicted the results in some of the games better than

the original human data from Arad and Rubinstein. Importantly, our results are not confined to

games involving strategic reasoning. In Appendix A, we apply the same procedure to the allocation

games from Charness and Rabin, and using data from a preregistered experiment with entirely novel

human responses, find similar improvements.

Although this approach provides no statistical guarantees for arbitrary novel settings—indeed,

no procedure can guarantee predictive power in entirely novel domains without a fully specified and

correct causal model—we demonstrated that we can make externally valid inferences within a pre-

committed family of settings. Using novel data from 4249 participants playing 1490 games randomly

sampled from a population of 883, 320 strategically diverse games, we found that the strategic level-

k agents generalized effectively across this broad domain. In 86% of games, all human subjects

chose actions within the support of the optimized AI subject responses. These agents substantially

outperformed the baseline AI off-the-shelf, the Harsanyi-Selten theoretical predictions, and several

other benchmarks. The results were robust to several alternative specifications. Because the games

were randomly sampled under the assumptions stated in Section 5.5, these results are externally

valid for the entire population of 883, 320 games. While we can only guarantee validity within

this specific population, the strong performance of theoretically motivated AI subjects across such

a diverse set of strategic games suggests that similar approaches would likely generalize to other

game-theoretic settings.

The results in this paper linking theoretically motivated AI subjects to robust generalizability

in novel settings, and atheoretical AI subjects to failure, are notable for reasons beyond prediction

(Hofman et al., 2021). They suggest that the underlying LLM has correctly learned the relevant

relationships between the AI subjects and human responses to the given setting. This is even

more notable given that it is highly unlikely that such a mapping was explicitly specified during

training. Such a finding aligns with recent evidence that LLMs form rich internal representations

of their human-generated training corpus rather than merely memorizing it (Ameisen et al., 2025;

Lindsey et al., 2025). If true for LLMs and human behavior more generally, our prompt-alignment-

generalizability exercises may offer more than improved predictive power. If an LLM armed with

a particular theoretically-motivated prompt matches human data particularly well across a wide

range of related settings, it might be evidence that the theory has a lot of explanatory power for

the underlying human sample. Building on a young social scientific literature (Batista and Ross,

2024; Enke and Shubatt, 2023; Ludwig and Mullainathan, 2024; Movva et al., 2025; Mullainathan

and Rambachan, 2024; Peterson et al., 2021; Si et al., 2024), this could, in turn, provide researchers
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with robust machine-learning methods to rapidly and efficiently inform promising new hypotheses.
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A Predicting behavior in novel allocation games

We further test the robustness of our approach by predicting human behavior in an entirely differ-

ent domain: novel allocation games. Unlike the strategic reasoning games studied, these games—

adapted from Charness and Rabin (2002) (CR) experiments on social preferences—require indi-

viduals to balance their own monetary payoffs against those of others. Thus, they offer a distinct

theoretical context for validating the generalizability of prompts identified using our approach.

We follow the same analytical structure as in Section 4.5. We first briefly describe the dictator

settings originally explored by CR, as these form our training dataset. Next, we detail our pro-

cedure for optimizing samples of AI subjects, drawing directly from the social-preference theories

hypothesized by CR. One key difference from the previous section is that we now optimize multiple

samples of human responses to distinct games simultaneously. This further decreases the likelihood

of overfitting on idiosyncratic features of any particular setting. We then validate these subjects on

a distinct set of two-player games studied by CR and demonstrate the pitfalls of optimizing over

atheoretical prompts. Finally, we introduce a new series of structurally distinct allocation games

and use them to illustrate the empirical efficacy of our approach in unequivocally novel games.

A.1 Charness and Rabin (2002)’s unilateral dictator games

CR study a set of simple allocation decisions in which one player (the dictator) chooses between

two ways of splitting money with a passive recipient. In one version of these games, for example,

the dictator (Person B) unilaterally decides between the options “Left” and “Right”:

( 400︸︷︷︸
To A

, 600︸︷︷︸
To B

)

︸ ︷︷ ︸
“Left”

vs. ( 700︸︷︷︸
To A

, 300︸︷︷︸
To B

)

︸ ︷︷ ︸
“Right”

.

CR collected human responses for six variations of this basic dictator setting, each featuring different

payoff distributions. These six settings constitute our training dataset, S, from which we derive

the joint empirical distribution P of choosing Left.

Figure A1 shows the original results. The columns represent different settings and show the

payoffs for each player depending on the dictator’s choice of “Left” or “Right”. The y-axis shows

the proportion of the sample that chose “Left” for each setting, and the black bars correspond to

the distribution of human responses from CR. Besides the Pareto-dominated Berk23 setting, where

everyone chooses “Right,” the human data is balanced across the two options.

To establish the baseline (P̂0), we elicited 1,000 responses per setting from GPT-4o, using

only game instructions without additional guidance.23 The red bars in Figure A1 represent these

baseline AI responses. Notably, the baseline AI strongly favors choosing “Right” in nearly every

setting, diverging sharply from the balanced human distributions. Quantitatively, this mismatch is

substantial: using mean absolute error (MAE) as our distance metric, we find 1
6

∑
s∈S d(Ps, P̂0) =

23Horton (2023) also explore the baseline for the same games. Although their goal is to provide an early demon-
stration of AI subjects more generally.

50



Figure A1: Distribution of responses for the single-stage training dictator games
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Notes: This figure reports the results of replications of single-player dictator games from Charness and Rabin (2002).
The columns each represent a different game. The x-axis corresponds to different samples of subjects playing each
game. The y-axis shows the proportion of that sample choosing the option “Left.” The bars in black (and the dashed
black lines) are the human responses from the original paper, red is the baseline AI subjects, blue is the AI subjects
optimized using efficiency, self-interest, inequity aversion as parameters, and the yellow are atheoretical AI subjects
with using preferences for the TV show new girl, taxidermy, and swimming. The error bars report 95% Wilson
confidence intervals.

0.42. Given that the maximum possible MAE is 1, this indicates very poor baseline predictive

accuracy.

A.2 Constructing the sample of AI subjects

Based on their results from these games (and other experiments in their paper), CR hypothesize

that a combination of efficiency concerns, inequity aversion, and self-interest is a key determinant

of dictators’ choices. To construct the sample of AI subjects to better match the human data from

these six settings simultaneously, we build a prompt template that incorporates these three traits as

our theoretical motivation for the prompts. Specifically, we parameterize each trait in the following

prompt:

θ(ϕeff , ϕself , ϕineq) = On a scale from 1 to 10, your efficiency level is: {ϕeff}. 10 means
you strongly prioritize maximizing combined payoffs, and 1 means you don’t care. On a
scale from 1 to 10, your self-interest level is: {ϕself}. 10 means you strongly prioritize
your own payoffs, and 1 means you don’t care. On a scale from 1 to 10, your inequity
aversion level is: {ϕineq}. 10 means you strongly prioritize fairness between players,
and 1 means you don’t care.

Our goal is to identify the parameter vector (or combination of vectors) that generates AI

response distributions closely matching the observed human data. To do this, we create sets of

k = 3 agents, each with a distinct parameter vector ϕ. Thus, each agent’s prompt is θ(ϕ), where

ϕ = (ϕeff , ϕself , ϕineq). We begin by randomly sampling 5 initial triples from the feasible space

Φ = {1, . . . , 10}3. For each sampled combination, we query the model 30 times per agent, producing

the empirical distribution of responses P .
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We then employ Bayesian optimization to iteratively search the parameter space, evaluating

an additional 15 sets of parameter combinations (for a total of 20). Using mean absolute error to

measure divergence from human data, this optimization identifies the optimal parameter vectors as:(
ϕ,
1ϕ

,
2ϕ

∗
3

)
=

(
(7, 10, 10), (3, 1, 3), (1, 10, 2)

)
. Assigning these parameters to three AI subjects

forms the optimized sample θ∗. As shown by the blue bars in Figure A1, the resulting distribution

aligns much closer with the human responses: 1
6

∑
s∈S d(Ps, P̂θ∗) = 0.2. This divergence represents

a significant improvement, more than halving the baseline AI’s error: ∆ = 0.42− 0.2 = .22 >> 0.

A.3 Validation using two-stage games from Charness and Rabin (2002)

To validate whether θ∗ generalizes to new tasks, we apply the same prompt template and the

values to a new set of more complicated sequential two-stage games from CR—the test set. Like

the validation variants from AR (costless and cycle), these games are plausibly driven by similar

underlying mechanisms as the training games, but are still different enough to provide a nontrivial

test of generalization. In the first stage, Person A chooses either a given allocation or lets Person B

choose one of two other known allocations. Person B chooses an allocation but is not informed of

Person A’s choice—until the payoffs are realized. Interestingly, the players’ beliefs about the other

player matter. For example, in one game, players are shown the following options:

Stage 1 (Person A chooses): ( 500︸︷︷︸
To A

, 500︸︷︷︸
To B

)

︸ ︷︷ ︸
“Left”

vs. (400 , 600) vs. (700 , 300)︸ ︷︷ ︸
Let Person B choose︸ ︷︷ ︸

“Right”

.

Stage 2 (Person B chooses): ( 400︸︷︷︸
To A

, 600︸︷︷︸
To B

)

︸ ︷︷ ︸
“Left”

vs. ( 700︸︷︷︸
To A

, 300︸︷︷︸
To B

)

︸ ︷︷ ︸
“Right”

.

Table A2 in Appendix D provides all 20 versions of these two-stage games (each with a different

set of payoffs), along with the human results from CR.

As a baseline, we elicit GPT-4o’s responses to these 20 games 150 times each with the temper-

ature set to 1. We then do the same for the theoretically-motivated sample θ∗—each of the three

agents in the mixture plays each game 50 times.

Figure A2 shows the results. The top row shows the results for the AI subjects as Person A, and

the bottom row for Person B. Each column corresponds to a different sample of subjects. The x-axis

shows the setting name and the y-axis shows the mean absolute difference between the fraction of

AI subjects choosing “Left” and the fraction of human subjects choosing “Left” in Charness and

Rabin. The difference between the baseline (red) and selected AI subjects (blue) is striking. The

MAE between the baseline and the human subjects as Player A (0.52) is three times larger than

that compared to the Optimized from the humans (0.17). The difference in MAE is twice as large

for Player B (0.29 vs. 0.15).

52



Figure A2: Distances between human and AI subjects for the two-stage dictator games
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Notes: This figure reports the results of replications of the sequential two-player games from Charness and Rabin
(2002) with AI subjects. Each row shows responses from either Person A (left) or Person B (right), while each
column corresponds to a different set of subjects. The x-axis shows the game, and the y-axis shows the mean
absolute difference between the fraction of AI subjects choosing “Left” and the fraction of human subjects choosing
“Left” in Charness and Rabin. The left column displays the baseline AI subjects (red), the middle column is the
selected AI subjects (blue), and the right column shows the atheoretical AI subjects (yellow). The horizontal dashed
lines show the mean absolute error in each pane.

This predictive improvement is robust across settings. In 31 of the 40 total decisions (20 settings,

each played as Person A and Person B), the optimized theory-grounded agents more accurately

matched human behavior than the baseline AI.

A.4 Optimizing among atheoretical prompts

Similarly to our study of AR, we show how grounding a prompt template in theoretically-motivated

parameters is important for generalization. We do this via negative example. Specifically, without a

theoretical grounding, the optimization procedure may fail to find a prompt that even fits in-sample.

Unlike in the previous section, we do not offer an analogous overfitting example. Since human

data from multiple games is used to optimize the AI subjects, finding a sample of AI subjects which

overfits requires finding prompts which overfits to all six settings. This is a much more difficult

task than finding a prompt which overfits to a single game. Indeed, this is an attractive feature of

using multiple training samples to construct agents (and validate) when possible.

To generate samples of arbitrary agents, we repeat the entire process from Section A.2 but

replace the theoretically-motivated attributes (i.e., efficiency, inequity aversion, and self-interest)

with wholly unscientific ones: a self-reported fondness for the TV show New Girl, an enthusiasm

for taxidermy, and swimming ability. This new prompt template is:
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θ(ϕng, ϕtax, ϕswim) = On a scale from 1 to 10, you think the show New Girl is: {ϕng}.
10 means you love New Girl, and 1 means you hate it. On a scale from 1 to 10, your
passion for taxidermy is: {ϕtax}. 10 means you love taxidermy, and 1 means you hate
it. On a scale from 1 to 10, your ability to swim is: {ϕswim}. 10 means you are a great
swimmer, and 1 means you can’t swim.

Using identical hyperparameters and the same Bayesian optimization procedure, we search

over this atheoretical space to see if any combination of (ϕng, ϕtax, ϕswim) (each a sample of

3 agents with their own parameter vector) could even match the original single-stage dictator

games in-sample. The resulting atheoretical parameter vector was:
(
ϕ∗
ath−1,ϕ

∗
ath−2,ϕ

∗
ath−3

)
=(

(5, 7, 1), (9, 9, 5), (7, 6, 8)
)
. As shown in Figure A1 (yellow), θ∗

ath constructed using these pa-

rameters and template failed to beat even the baseline AI subjects’ performance. In fact, throughout

the search, no parameter combination for “loving New Girl,” “passion for taxidermy,” or “swim-

ming skill” ever produced a distribution of choices that aligned more closely with real humans.

This result demonstrates the importance of grounding AI subjects in theoretical constructs.

This lack of improvement persisted in the two-stage validation games as well (Figure A2; right-

most column). The atheoretical AI subjects and the baseline were effectively indistinguishable in

their distribution of responses as Player A, and the atheoretical subjects were only a little better

as Player B. Overall, the atheoretical AI subjects were far less aligned than the selected AI sub-

jects. They were closer to the human data than the baseline in 32.5% of the settings, worse than

the baseline in 22.5% of the settings, and identical in the remaining games. The only way these

arbitrary prompts generalize is that their poor performance is consistent across settings.

A.5 Predicting the novel three-player games

We conclude this section by introducing a set of 8 novel three-player allocation games to evaluate

θ∗ and θ∗
ath in new settings with a new participant pool. We recruited n = 494 participants from

Prolific to make three allocation decisions drawn from eight distinct settings, each involving a choice

between two monetary allocations. Participants were paid $1.00 and could earn a bonus of up to

an additional $1.00, depending on their own or others’ choices. A representative setting is:

Option A:

$1.00 To Selected

$0.75 To Each Other Player
Option B:

$0.50 To Selected

$1.00 To Each Other Player

After completion, one of the three decisions was randomly selected for payment. Participants were

then randomly grouped into triads, with one member randomly chosen as the Selected Player.

All three members received bonuses according to the allocation chosen by their group’s Selected

Player.24 Multiple attention checks confirmed participants understood the instructions and the

24Suppose you, the reader, are completing this task and choose option A in the above setting. If after the survey is
completed, the decision above is selected for payment and you are randomly chosen as the Selected Player, you will
receive a $1.00 bonus, and the other two players each receive an extra $0.75. However, if another player was chosen
as the Selected Player and they had picked Option A, then you would receive a $0.75 bonus payment.
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payoffs. Participants’ decisions only determined payments if they were the Selected Player. Uncer-

tainty over selection ensured choices reflected genuine social preferences.

The entire experimental design—including settings, procedures, and the optimized AI subject

parameters—was preregistered (see Figure A4 for the full instructions). To the best of our knowl-

edge, games with these exact payoffs have never been used in an experiment with publicly available

data.25 The full instructions are shown in Figure A4.

Figure A3a shows the results for all four subject samples: human participants (black), baseline

AI subjects (red), theoretically-motivated AI subjects (θ∗ in blue), and atheoretically-motivated AI

subjects (θ∗
ath in yellow). Each column corresponds to a setting with the relevant options indicated,

with the y-axis indicating the proportion of subjects choosing Option A.

Figure A3: Results from the novel three-player allocation games

Game 1 (n=186)
A: $0.40, $0.30
B: $0.50, $0.60

Game 2 (n=186)
A: $1.00, $0.00
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Game 3 (n=185)
A: $0.80, $0.40
B: $0.10, $0.70

Game 4 (n=186)
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Game 5 (n=185)
A: $0.30, $0.70
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Game 6 (n=186)
A: $0.50, $0.50
B: $0.45, $1.00

Game 7 (n=186)
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Notes: Panel (a) shows the proportion of choices for Option A across eight novel three-player allocation settings.
Human responses are depicted in black (with the dashed lines), baseline AI in red, theoretically motivated AI in blue,
and atheoretical AI in yellow. Error bars indicate 95% Wilson confidence intervals. Panel (b) presents the absolute
error between human and AI choices across the settings, with dashed lines marking the MAE.

Human responses generally reflect balanced preferences, except for the extreme setting 8, where

participants unanimously select one option. The baseline AI consistently diverges from human

25CR explored some three-player games, but these differ substantially in payoff structures, bonus rules, and often
involved imperfect information.
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behavior, disproportionately favoring Option B in nearly every setting (MAE = 0.259) Atheoretical

AI subjects offer no relative improvement, with a slightly worse fit (MAE = 0.264).

θ∗ better approximates human choices across settings (MAE = 0.206)—about 21% better than

the baseline. This improvement is emphasized in Figure A3b, showing the per-game absolute error

along with the MAE. Importantly, this performance improvement is not driven by a few outliers:

the theoretically motivated sample matches or exceeds both baseline and atheoretical AI subjects

in five settings. And in the games where the baseline AI and atheoretical AI subjects are better,

the difference is not large.

As with the results in Section 4, these findings demonstrate that theoretically grounded AI

subjects, optimized using prior related experimental data, can significantly improve the predictive

power of AI subjects in novel settings.

B All game instructions

Basic 11-20 Game

You and another player are playing a game in which each player requests an amount

of money. The amount must be (an integer) between 11 and 20 shekels. Each player

will receive the amount he requests. A player will receive an additional amount of 20

shekels if he asks for exactly one shekel less than the other player. What amount of

money would you request?

Cycle 11-20 Game

You and another player are playing a game in which each player requests an amount of

money. The amount must be (an integer) between 11 and 20 shekels. Each player will

receive the amount of money he requests. A player will receive an additional amount of

20 shekels if: (i) he asks for exactly one shekel less than the other player or (ii) he asks

for 20 shekels and the other player asks for 11 shekels. What amount of money would

you request?

Costless 11-20 Game

You and another player are playing a game in which each player chooses an integer in

the range 11-20. A player who chooses 20 will receive 20 shekels (regardless of the other

player’s choice). A player who chooses any other number in this range will receive three

shekels less than in the case where he chooses 20. However, he will receive an additional

amount of 20 shekels if he chooses a number that is one less than that chosen by the

other player. Which number would you choose?

Basic 1-10 Game
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You are going to play a game where you must select a whole number between 1 and 10.

You will receive a number of points equivalent to that number. For example, if you select

3, you will get 3 points. If you select 7, you will get 7 points, etc. After you tell us your

number, we will randomly pair you with another Prolific worker who is also playing this

game. They will also have chosen a number between 1 and 10. If either of you select a

number exactly one less than the other player’s number, than the player with the lower

number will receive an additional 10 points. Please choose a number between 1 and 10.

Cycle 1-10 Game

You are going to play a game where you must select a whole number between 1 and 10.

You will receive a number of points equivalent to that number. For example, if you select

3, you will get 3 points. If you select 7, you will get 7 points, etc. After you tell us your

number, we will randomly pair you with another Prolific worker who is also playing this

game. They will also have chosen a number between 1 and 10. There are 2 ways to win

an additional 10 points based on both yours and the other player’s choice: 1. If either

of you select a number exactly one less than the other player’s number, then the player

with the lower number will receive an additional 10 points. 2. If either of you select

10 and the other selects 1, then the player who chose 10 will receive an additional 10

points. Please choose a number between 1 and 10.

Costless 1-10 Game

You are going to play a game where you must select a whole number between 1 and 10.

You will receive 10 points if you select the number 10 and you will receive 7 points for

selecting any other number. After you tell us your number, we will randomly pair you

with another Prolific worker who is also playing this game. They will also have chosen

a number between 1 and 10. If either of you select a number exactly one less than the

other player’s number, than the player with the lower number will receive an additional

10 points. Please choose a number between 1 and 10.

1-7 Game

You are going to play a game where you must select a whole number between 1 and 7.

You will receive a number of points equivalent to that number. For example, if you select

3, you will get 3 points. If you select 6, you will get 6 points, etc. After you tell us your

number, we will randomly pair you with another Prolific worker who is also playing this

game. They will also have chosen a number between 1 and 7. If either of you select a

number exactly one less than the other player’s number, than the player with the lower

number will receive an additional 10 points. Please choose a number between 1 and 7.
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Figure A4: Screenshot of the three-player game instructions

Notes: This figure shows the instructions for the novel three-player allocation game presented to participants.

Figure A5: Bonus opportunity for the games in Section 5

Notes: This shows the instructions for the bonus opportunity presented to participants for the novel sample of 1,500
games.
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Figure A6: Choosing a number for the assigned game in Section 5

Notes: This figure shows an example screenshot of participants selecting their number for their assigned game from
the set of 1,500 games.

C Harsanyi–Selten selector implementation details

Let E be the finite set of Nash equilibria of a simultaneous, two-player normal-form game that is

symmetric, so that the row player’s payoff matrix is U and the column player’s payoff matrix is U⊤.

Harsanyi and Selten’s four-stage procedure (Harsanyi and Selten, 1988) deterministically selects a

single equilibrium. For the vast majority of games in our setting, an equilibrium is selected in one

of the first three steps. The fourth is barely used and is more a formality.

Our implementation follows that blueprint with two minimal deviations that (1) protect sym-

metric components in the Pareto filter and (2) enforce symmetry in the reported profile after

tracing. The procedure deterministically returns a single selection; in symmetric games, and when

the tracing routine returns normally, the selected profile is symmetric. The code is or will soon be

available at https://benjaminmanning.io/. The following broadly outlines the procedure.

Step 1 (component decomposition). Two equilibria e = (σr, σc) and e′ = (τ r, τ c) are adjacent

when they differ in exactly one player’s strategy. The connected components of the resulting

graph—call them C1, . . . , CK—are the equilibrium components.
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Step 2 (Pareto filter with symmetry safeguard). For each component Ck compute its secu-

rity vector v(Ck) =
(
mine∈Ck

u1(e), mine∈Ck
u2(e)

)
, where u1(e) = σr⊤Uσc and u2(e) = σr⊤U⊤σc.

Delete Ck if some Cℓ is strictly better in both coordinates. Any component that contains at least

one symmetric equilibrium is protected against domination by a purely asymmetric component. 26

Step 3 (symmetry filter and risk dominance). Discard all remaining components that con-

tain no symmetric equilibrium. If multiple components survive, choose the one whose representative

symmetric equilibrium (the first symmetric equilibrium encountered when iterating the component)

minimises the usual risk-dominance index

R(σ) =
∑
i ̸=j

σiσj
[
Uii − Uji

][
Uii − Uij

]
.

If two or more symmetric components attain exactly the same minimal value, we keep the first one

encountered in iteration order. If no symmetric components remain after the symmetry filter, we

select the first Pareto-surviving component as a fallback before Step 4.

Step 4 (alpha-tracing). Let the winning component be the one selected in Step 3 (or the first

Pareto-surviving component if no symmetric component remains).

• If the winning component is a singleton that already contains a symmetric equilibrium, we

return it directly (no tracing).

• Otherwise, we run Gambit’s logit α-tracing procedure on the full game—not restricted to the

winning component—starting from the uniform prior. We follow the path to α = 1 and take

the resulting profile as the candidate equilibrium. To guard against numerical asymmetries,

we then enforce symmetry in the reported profile by setting σr = σc equal to the traced row

strategy. Because the prior and the game are symmetric, the traced profile is generically

symmetric; the coercion is a safeguard.

• Deviation 2 (singleton asymmetric case). If the winning component is a singleton asymmetric

equilibrium, we run the same α-tracing procedure and then report the coerced symmetric

profile as above. If the tracing routine raises an exception, the unique equilibrium is returned

unchanged.

• If the logit tracing call raises an exception when the winning component has more than one

equilibrium, we substitute the first equilibrium in that component and report the symmetric

profile that assigns both players its row strategy. This preserves determinism but the reported

symmetric profile need not itself be a Nash equilibrium.

26If Harsanyi and Selten had restricted attention to symmetric games, this refinement would be redundant; it
matters only because we run the same code on possibly asymmetric input matrices during robustness checks.
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D Additional Figures

Figure A7: Response Distributions for the Basic Version for the 11-20 Game with raw candidate
responses

Baseline AI Optimized Strategic AI Mixture Candidate Personas
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Notes: This figure displays empirical PMFs for three samples playing the basic 11-20 money request game: human
subjects from Arad and Rubinstein (left panel), the naive baseline (center-left panel), responses from our selected
AI subjects based on the weights in Table 2 (center-right panel), and responses based on the unqeighted and evenly
distributed prompts in Table 2 (right panel).
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Figure A8: Comparison of novel 1-10 for alternative distance metrics

Notes: Reports the divergence between human and each AI distribution for the novel games accross various additional
distance metrics. For three of the four metrics, the optimized strategic agents are better than the baseline. Only in
the costless version of the game with the Earth Mover’s distance as the metric is the baseline slightly better.

62



Table A1: Atheoretical AI subjects and resulting mixture weights

Historical Figures

Persona Weight Persona Weight

Cleopatra 0.000 Genghis Khan 0.000
Julius Caesar 0.891 Mother Teresa 0.000
Confucius 0.109 Martin Luther King 0.000
Joan of Arc 0.000 Frida Kahlo 0.000
Nelson Mandela 0.000 George Washington 0.000
Mahatma Gandhi 0.000 Winston Churchill 0.000
Harriet Tubman 0.000 Mansa Musa 0.000
Leonardo da Vinci 0.000 Sacagawea 0.000
Albert Einstein 0.000 Emmeline Pankhurst 0.000
Marie Curie 0.000 Socrates 0.000

MBTI Types

Type Weight Type Weight

You are an ESTJ 0.000 You are an ISTJ 0.000
You are an ESTP 0.000 You are an ISTP 0.000
You are an ESFJ 0.000 You are an ISFJ 0.000
You are an ESFP 0.000 You are an ISFP 0.000
You are an ENTJ 0.000 You are an INTJ 0.000
You are an ENTP 0.000 You are an INTP 0.000
You are an ENFJ 0.000 You are an INFJ 0.000
You are an ENFP 1.000 You are an INFP 0.000

Always Pick ‘N‘

Number Weight Number Weight

You always like to pick 11 0.037 You always like to pick 16 0.065
You always like to pick 12 0.000 You always like to pick 17 0.324
You always like to pick 13 0.028 You always like to pick 18 0.296
You always like to pick 14 0.056 You always like to pick 19 0.120
You always like to pick 15 0.009 You always like to pick 20 0.065

Notes: This table displays three sets of arbitrary prompts—each a different Θ. The weights columns display the
optimized weights w∗ when performing the selection method on the basic version of the 11-20 game. Weights sum
to 1 within each set. For the historical figures, each prompt is told “You are X” where X is a historical figure. For
the Myers-Briggs set, each prompt is also told that the four letters are in references to the Myers-Briggs personality
type indicator.
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Table A2: Human subjects results for two-person response games in Charness and Rabin (2002)

Human Subject Responses
Game Description Out Enter Left Right

Panel A: B’s payoffs identical

Barc7 A chooses (750,0) or lets B choose .47 .53 .06 .94
(400,400) vs. (750,400)

Barc5 A chooses (550,550) or lets B choose .39 .61 .33 .67
(400,400) vs. (750,400)

Berk28 A chooses (100,1000) or lets B choose .50 .50 .34 .66
(75,125) vs. (125,125)

Berk32 A chooses (450,900) or lets B choose .85 .15 .35 .65
(200,400) vs. (400,400)

Panel B: B’s sacrifice helps A

Barc3 A chooses (725,0) or lets B choose .74 .26 .62 .38
(400,400) vs. (750,375)

Barc4 A chooses (800,0) or lets B choose .83 .17 .62 .38
(400,400) vs. (750,375)

Berk21 A chooses (750,0) or lets B choose .47 .53 .61 .39
(400,400) vs. (750,375)

Barc6 A chooses (750,100) or lets B choose .92 .08 .75 .25
(300,600) vs. (700,500)

Barc9 A chooses (450,0) or lets B choose .69 .31 .94 .06
(350,450) vs. (450,350)

Berk25 A chooses (450,0) or lets B choose .62 .38 .81 .19
(350,450) vs. (450,350)

Berk19 A chooses (700,200) or lets B choose .56 .44 .22 .78
(200,700) vs. (600,600)

Berk14 A chooses (800,0) or lets B choose .68 .32 .45 .55
(0,800) vs. (400,400)

Barc1 A chooses (550,550) or lets B choose .96 .04 .93 .07
(400,400) vs. (750,375)

Berk13 A chooses (550,550) or lets B choose .86 .14 .82 .18
(400,400) vs. (750,375)

Berk18 A chooses (0,800) or lets B choose .00 1.00 .44 .56
(0,800) vs. (400,400)

Panel C: B’s sacrifice hurts A

Barc11 A chooses (375,1000) or lets B choose .54 .46 .89 .11
(400,400) vs. (350,350)

Berk22 A chooses (375,1000) or lets B choose .39 .61 .97 .03
(400,400) vs. (250,350)

Berk27 A chooses (500,500) or lets B choose .41 .59 .91 .09
(800,200) vs. (0,0)

Berk31 A chooses (750,750) or lets B choose .73 .27 .88 .12
(800,200) vs. (0,0)

Berk30 A chooses (400,1200) or lets B choose .77 .23 .88 .12
(400,200) vs. (0,0)

Notes: This table presents the complete set of two-person response games from Charness and Rabin along with
human subject responses. This figure is identical to the one they show in the original paper. For each game, we show
the proportion of subjects choosing each option. ”Out” and ”Enter” refer to Person A’s initial choice, while ”Left”
and ”Right” refer to Person B’s choice if given the opportunity. All payoff values are in experimental currency units.
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Table A3: Statistical Tests Comparing Strategic AI subjects vs Other Models (ε = 0.05)

Comparison (n Games) Λ̄S Wilcoxon Permutation Test
∑

s∈S 1{Λ̂s > 0}/|S|

Baseline AI 1.903*** p < .001*** p < .001*** 0.726***
(0.081) (0.012)

Harsanyi-Selten Nash 2.587*** p < .001*** p < .001*** 0.730***
(0.105) (0.012)

Mixed 2.302*** p < .001*** p < .001*** 0.732***
(0.136) (0.018)

Pure 2.788*** p < .001*** p < .001*** 0.728***
(0.149) (0.015)

Random Pure Strategy 7.413*** p < .001*** p < .001*** 0.942***
(0.122) (0.006)

Uniform 0.335*** p < .001*** p < .001*** 0.598***
(0.058) (0.013)

Notes: This table shows the results of the statistical tests comparing the strategic AI subjects to the other models
for ε = 0.05. The first column shows the comparison model. The second presents eΛ̄S with bootstrap confidence
intervals comparing the strategic AI subjects to the other models. The third and fourth columns present p-values for
the Wilcoxon rank-sum test and random-sign permutation test, respectively. The fifth column presents the proportion
of games for which the strategic AI subjects is the best predictor with its 95% Clopper-Pearson interval. Significance
Indicator: ∗∗∗p<0.001, ∗∗p<0.01, ∗p<0.05.

Table A4: Statistical Tests Comparing Optimized vs Other Models (ε = 0.1)

Comparison (n Games) Λ̄S Wilcoxon Permutation Test
∑

s∈S 1{Λ̂s > 0}/|S|

Baseline AI 1.588*** p < .001*** p < .001*** 0.724***
(0.063) (0.012)

Harsanyi-Selten Nash 1.713*** p < .001*** p < .001*** 0.679***
(0.089) (0.012)

Mixed 1.562*** p < .001*** p < .001*** 0.691***
(0.111) (0.019)

Pure 1.819*** p < .001*** p < .001*** 0.671***
(0.127) (0.016)

Random Pure Strategy 5.779*** p < .001*** p < .001*** 0.928***
(0.103) (0.007)

Uniform 0.468*** p < .001*** p < .001*** 0.611***
(0.051) (0.013)

Notes: This table shows the results of the statistical tests comparing the strategic AI subjects to the other models for
ε = 0.1. The first column shows the comparison model. The second presents eΛ̄S with bootstrap confidence intervals
comparing the strategic AI subjects to the other models. The third and fourth columns present p-values for the
Wilcoxon rank-sum test and random-sign permutation test, respectively. The fifth column presents the proportion of
games for which the strategic AI subjects is the best predictor with its 95% Clopper-Pearson interval. Significance
Indicator: ∗∗∗p<0.001, ∗∗p<0.01, ∗p<0.05.
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Table A5: Statistical Tests Comparing Optimized vs Other Models (ε = 0.2)

Comparison (n Games) Λ̄S Wilcoxon Permutation Test
∑

s∈S 1{Λ̂s > 0}/|S|

Baseline AI 1.227*** p < .001*** p < .001*** 0.715***
(0.050) (0.012)

Harsanyi-Selten Nash 0.891*** p < .001*** p < .001*** 0.622***
(0.072) (0.013)

Mixed 0.878*** p < .001*** p < .001*** 0.647***
(0.087) (0.019)

Pure 0.899*** p < .001*** p < .001*** 0.604***
(0.104) (0.017)

Random Pure Strategy 4.151*** p < .001*** p < .001*** 0.902***
(0.083) (0.008)

Uniform 0.592*** p < .001*** p < .001*** 0.643***
(0.044) (0.012)

Notes: This table shows the results of the statistical tests comparing the strategic AI subjects to the other models for
ε = 0.2. The first column shows the comparison model. The second presents eΛ̄S with bootstrap confidence intervals
comparing the strategic AI subjects to the other models. The third and fourth columns present p-values for the
Wilcoxon rank-sum test and random-sign permutation test, respectively. The fifth column presents the proportion of
games for which the strategic AI subjects is the best predictor with its 95% Clopper-Pearson interval. Significance
Indicator: ∗∗∗p<0.001, ∗∗p<0.01, ∗p<0.05.

Table A6: Statistical Tests Comparing Optimized vs Other Models (ε = 0.3)

Comparison (n Games) Λ̄S Wilcoxon Permutation Test
∑

s∈S 1{Λ̂s > 0}/|S|

Baseline AI 0.985*** p < .001*** p < .001*** 0.705***
(0.042) (0.012)

Harsanyi-Selten Nash 0.446*** p < .001*** p < .001*** 0.575***
(0.062) (0.013)

Mixed 0.517*** p < .001*** p < .001*** 0.611***
(0.073) (0.020)

Pure 0.396*** p < .001*** p < .001*** 0.551**
(0.090) (0.017)

Random Pure Strategy 3.191*** p < .001*** p < .001*** 0.884***
(0.070) (0.008)

Uniform 0.642*** p < .001*** p < .001*** 0.666***
(0.039) (0.012)

Notes: This table shows the results of the statistical tests comparing the strategic AI subjects to the other models for
ε = 0.3. The first column shows the comparison model. The second presents eΛ̄S with bootstrap confidence intervals
comparing the strategic AI subjects to the other models. The third and fourth columns present p-values for the
Wilcoxon rank-sum test and random-sign permutation test, respectively. The fifth column presents the proportion of
games for which the strategic AI subjects is the best predictor with its 95% Clopper-Pearson interval. Significance
Indicator: ∗∗∗p<0.001, ∗∗p<0.01, ∗p<0.05.

66



Table A7: Summary statistics comparing human responses with model-predicted supports ε = 0.

Optimized AI Baseline AI HS Nash Eq.

% Humans Choose Max Prob. Strategy 24.3 16.8 30.4

% Humans Choose Top 3 Prob. Strategy 52.9 39.1 49.6

% Humans Choose Pos. Prob. Strategy 94.3 81.9 46.4

% Games Any Human Chooses Pos. Prob. Strategy 99.3 93.7 74.7

% Games All Humans Choose Pos. Prob. Strategy 86.3 65.3 17.7

Notes: Each column reports regression estimates within a subgroup defined by the points rule or bonus rule. We
report Huber-White robust standard errors. The reference categories are the “normal” points rule and the “coordinate
low” bonus rule.

Table A8: Log-Likelihood Ratio Regressions Across Game Types (ε = 0.05)

Log-Likelihood Ratio
Baseline AI HS Nash Eq.

(1) (2)

Normal -1 (Pts) −0.878∗∗∗ (0.260) 0.419 (0.348)
Normal -2 (Pts) −1.148∗∗∗ (0.256) 0.290 (0.340)
Normal +1 (Pts) −0.692∗∗ (0.267) 0.510 (0.340)
Normal +2 (Pts) −0.680∗∗ (0.258) 0.250 (0.343)
Two Less Max Costless (Pts) −0.899∗∗ (0.308) −1.147∗∗ (0.384)
Equal (Bonus) −0.439 (0.414) −0.341 (0.521)
Gap Absolute (Bonus) −0.705 (0.420) 0.151 (0.492)
Gap Higher (Bonus) −1.573∗∗∗ (0.392) 0.591 (0.528)
Gap Lower (Bonus) −1.130∗∗ (0.415) −0.139 (0.473)
Less Upper (Bonus) 0.340 (0.438) 1.270∗ (0.537)
More Than (Bonus) −0.916∗ (0.414) 1.880∗∗∗ (0.511)
Sum Even (Bonus) −1.190∗∗ (0.400) 1.160∗ (0.547)
Sum Odd (Bonus) −0.942∗ (0.414) 0.442 (0.535)
Sum Upper (Bonus) 0.726 (0.461) 0.957 (0.574)
Unequal (Bonus) −0.545 (0.429) 0.045 (0.514)
Constant 3.202∗∗∗ (0.388) 1.859∗∗∗ (0.448)

Observations 1,477 1,477
R2 0.070 0.039
Adjusted R2 0.061 0.029

Notes: Each column reports regression estimates within a subgroup defined by the points rule or bonus rule. We
report Huber-White robust standard errors. The reference categories are the “normal” points rule and the “coordinate
low” bonus rule. Significance Indicator: ∗∗∗p<0.001, ∗∗p<0.01, ∗p<0.05.
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Table A9: Log-Likelihood Ratio Regressions Across Game Types (ε = 0.1)

Log-Likelihood Ratio
Baseline AI HS Nash Eq.

(1) (2)

Normal -1 (Pts) −0.724∗∗∗ (0.219) 0.387 (0.294)
Normal -2 (Pts) −0.927∗∗∗ (0.216) 0.270 (0.287)
Normal +1 (Pts) −0.586∗∗ (0.226) 0.444 (0.288)
Normal +2 (Pts) −0.567∗∗ (0.220) 0.214 (0.292)
Two Less Max Costless (Pts) −0.824∗∗ (0.255) −0.826∗ (0.328)
Equal (Bonus) −0.104 (0.351) −0.493 (0.441)
Gap Absolute (Bonus) −0.383 (0.352) 0.123 (0.416)
Gap Higher (Bonus) −1.086∗∗∗ (0.325) 0.275 (0.453)
Gap Lower (Bonus) −0.711∗ (0.344) −0.097 (0.401)
Less Upper (Bonus) 0.300 (0.364) 0.930∗ (0.458)
More Than (Bonus) −0.622 (0.345) 1.408∗∗ (0.432)
Sum Even (Bonus) −0.745∗ (0.337) 0.781 (0.468)
Sum Odd (Bonus) −0.516 (0.351) 0.267 (0.452)
Sum Upper (Bonus) 0.593 (0.379) 0.637 (0.492)
Unequal (Bonus) −0.288 (0.359) 0.105 (0.431)
Constant 2.510∗∗∗ (0.322) 1.181∗∗ (0.383)

Observations 1,477 1,477
R2 0.056 0.033
Adjusted R2 0.046 0.023

Notes:Each column reports regression estimates within a subgroup defined by the points rule or bonus rule. We report
Huber-White robust standard errors. The reference categories are the “normal” points rule and the “coordinate low”
bonus rule. Significance Indicator: ∗∗∗p<0.001, ∗∗p<0.01, ∗p<0.05.
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Table A10: Log-Likelihood Ratio Regressions Across Game Types (ε = 0.2)

Log-Likelihood Ratio
Baseline AI HS Nash Eq.

(1) (2)

Normal -1 (Pts) −0.553∗∗ (0.174) 0.349 (0.239)
Normal -2 (Pts) −0.686∗∗∗ (0.174) 0.247 (0.234)
Normal +1 (Pts) −0.467∗ (0.182) 0.373 (0.234)
Normal +2 (Pts) −0.441∗ (0.178) 0.182 (0.239)
Two Less Max Costless (Pts) −0.727∗∗∗ (0.201) −0.512 (0.271)
Equal (Bonus) 0.180 (0.284) −0.629 (0.361)
Gap Absolute (Bonus) −0.079 (0.280) 0.124 (0.342)
Gap Higher (Bonus) −0.631∗ (0.256) 0.005 (0.377)
Gap Lower (Bonus) −0.315 (0.270) −0.011 (0.329)
Less Upper (Bonus) 0.236 (0.288) 0.599 (0.376)
More Than (Bonus) −0.365 (0.272) 0.964∗∗ (0.352)
Sum Even (Bonus) −0.354 (0.269) 0.400 (0.387)
Sum Odd (Bonus) −0.154 (0.282) 0.111 (0.368)
Sum Upper (Bonus) 0.455 (0.295) 0.338 (0.407)
Unequal (Bonus) −0.071 (0.284) 0.175 (0.347)
Constant 1.791∗∗∗ (0.253) 0.536 (0.317)

Observations 1,477 1,477
R2 0.042 0.027
Adjusted R2 0.032 0.017

Notes: Each column reports regression estimates within a subgroup defined by the points rule or bonus rule. We
report Huber-White robust standard errors. The reference categories are the “normal” points rule and the “coordinate
low” bonus rule. Significance Indicator: ∗∗∗p<0.001, ∗∗p<0.01, ∗p<0.05.

69



Table A11: Log-Likelihood Ratio Regressions Across Game Types (ε = 0.3)

Log-Likelihood Ratio
Baseline AI HS Nash Eq.

(1) (2)

Normal -1 (Pts) −0.439∗∗ (0.146) 0.321 (0.205)
Normal -2 (Pts) −0.531∗∗∗ (0.146) 0.230 (0.201)
Normal +1 (Pts) −0.386∗ (0.153) 0.328 (0.200)
Normal +2 (Pts) −0.355∗ (0.150) 0.165 (0.206)
Two Less Max Costless (Pts) −0.648∗∗∗ (0.166) −0.335 (0.235)
Equal (Bonus) 0.308 (0.239) −0.691∗ (0.312)
Gap Absolute (Bonus) 0.089 (0.235) 0.146 (0.296)
Gap Higher (Bonus) −0.382 (0.211) −0.116 (0.329)
Gap Lower (Bonus) −0.098 (0.224) 0.069 (0.284)
Less Upper (Bonus) 0.189 (0.241) 0.416 (0.325)
More Than (Bonus) −0.228 (0.225) 0.731∗ (0.303)
Sum Even (Bonus) −0.157 (0.225) 0.184 (0.337)
Sum Odd (Bonus) 0.019 (0.237) 0.041 (0.316)
Sum Upper (Bonus) 0.377 (0.243) 0.182 (0.354)
Unequal (Bonus) 0.035 (0.236) 0.224 (0.296)
Constant 1.347∗∗∗ (0.210) 0.179 (0.276)

Observations 1,477 1,477
R2 0.035 0.026
Adjusted R2 0.025 0.016

Notes: Each column reports regression estimates within a subgroup defined by the points rule or bonus rule. We
report Huber-White robust standard errors. The reference categories are the “normal” points rule and the “coordinate
low” bonus rule. Significance Indicator: ∗∗∗p<0.001, ∗∗p<0.01, ∗p<0.05.
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