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Abstract

We present an approach for automatically generating and testing, in silico,
social scientific hypotheses. This automation is made possible by recent ad-
vances in large language models (LLM), but the key feature of the approach
is the use of structural causal models. Structural causal models provide a lan-
guage to state hypotheses, a blueprint for constructing LLM-based agents, an
experimental design, and a plan for data analysis. The fitted structural causal
model becomes an object available for prediction or the planning of follow-on
experiments. We demonstrate the approach with several scenarios: a nego-
tiation, a bail hearing, a job interview, and an auction. In each case, causal
relationships are both proposed and tested by the system, finding evidence
for some and not others. We provide evidence that the insights from these
simulations of social interactions are not available to the LLM purely through
direct elicitation. When given its proposed structural causal model for each
scenario, the LLM is good at predicting the signs of estimated effects, but
it cannot reliably predict the magnitudes of those estimates. In the auction
experiment, the in silico simulation results closely match the predictions of
auction theory, but elicited predictions of the clearing prices from the LLM
are inaccurate. However, the LLM’s predictions are dramatically improved if
the model can condition on the fitted structural causal model. In short, the
LLM knows more than it can (immediately) tell.
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1 Introduction

There is much work on efficiently estimating statistical models of human behav-
ior but comparatively little work on efficiently generating those models to estimate.
Previously, developing such models and hypotheses to test was exclusively a hu-
man task. This is changing as researchers have begun to explore automated hy-
pothesis generation through the use of machine learning.1 But even with novel
machine-generated hypotheses, there is still the problem of testing. A potential so-
lution is simulation. Researchers have shown that Large Language Models (LLM)
can simulate humans as experimental subjects with surprising degrees of realism
[1, 3, 6, 8, 9, 10, 20, 38, 42, 55]. To the extent that these simulation results carry
over to human subjects in out-of-sample tasks, they provide another option for test-
ing [28]. In this paper, we combine these ideas—automated hypothesis generation
and automated in silico hypothesis testing—by using LLMs for both purposes. We
demonstrate that such automation is possible. We evaluate the approach by com-
paring results to a setting where the real-world predictions are well known and test
to see if an LLM can be used to generate information that it cannot access through
direct elicitation.

The key innovation in our approach is the use of structural causal models to
organize the research process. Structural causal models are mathematical represen-
tations of cause and effect [46, 61] and have long offered a language for expressing
hypotheses. What is novel in our paper is the use of these models as a blueprint for
the design of agents and experiments. In short, each explanatory variable describes
something about a person or scenario that has to vary for the effect to be identified,
so the system “knows” it needs to generate agents or scenarios that vary on that
dimension—a straightforward transition from stated theory to experimental design
and data generation. Furthermore, the structural causal model offers a pre-specified
plan for estimation [24, 25, 32].

We built an open-source computational system implementing this structural causal
model-based approach. The system can automatically generate hypotheses, design
experiments, run those experiments on independent LLM-powered agents, and ana-
lyze the results. We use this system to explore several social scenarios: (1) two people
bargaining over a mug, (2) a bail hearing for tax fraud, (3) a lawyer interviewing
for a job, and (4) an open ascending price auction with private values for a piece

1A few examples include generative adversarial networks to formulate new hypotheses [35],
algorithms to find anomalies in formal theories [40], reinforcement learning to propose tax policies
[62], random forests to identify heterogenous treatment effects [59], and several others [12, 13, 19,
22, 47].
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of art. We allow the system to propose the hypotheses for the first two scenarios
and then run the experimental simulations without intervention. For (3) and (4),
we demonstrate the system’s ability to accommodate human input at any point by
selecting the hypotheses ourselves and editing some of the agents, but otherwise, we
allow the system to proceed autonomously.

Though yet to be optimized for novelty, the system formulates and tests multiple
falsifiable hypotheses. From these hypotheses, it generates several findings. The
probability of a deal increased as the seller’s sentimental attachment to the mug
decreased, and both the buyer’s and the seller’s reservation prices mattered. A
remorseful defendant was granted lower bail but was not so fortunate if his criminal
history was extensive. However, the judge’s case count before the hearing—which
was hypothesized to matter—did not affect the final bail amount. The candidate
passing the bar exam was the only important factor in her getting the job. Neither
the candidate’s height nor the interviewer’s friendliness affected the outcome.

The auction scenario is particularly illuminating. An increase in the bidders’
reservation prices caused an increase in the clearing price, a clearing price that is
always close to the second-highest reservation amongst the bidders. These simulation
results closely match the theory [36] and what has been observed empirically [5].

None of the findings from the system’s experiments are “counterintuitive,” but
it is important to emphasize they were the result of empiricism, not just model
introspection. However, this does raise the question of whether the simulations
are even necessary.2 Instead of simulation, could an LLM simply do a “thought
experiment” about the proposed in silico experiment and achieve the same insight?
To test this idea, we describe the experiments that will be simulated and ask the
LLM to predict the results—both the path estimates and point predictions. The
path estimates being the coefficients in the linear structural causal model. To make
this concrete, suppose we had the simple linear model y = Xβ to describe some
scenario, and we ran an experiment to estimate β̂. We describe the scenario and the
experiment to the LLM and ask it to predict yi given a particular Xi (a “predict-yi”
task). Separately, we ask it to predict β̂ (a “predict-β̂” task). Later, we examine
how the LLM does on the predict-yi task when it has access to the fitted structural
causal model (i.e., β̂).

In the predict-yi task, we prompt the LLM to predict the outcome yi given each
possible combination of the Xi’s from the auction experiment. Direct elicitation of
the predictions for yi in the auction experiment is wildly inaccurate. The predictions
are even further from the theory than the empirical results.

In the predict-β̂ task, the LLM is asked to predict the fitted structural causal

2Performing these experiments required a substantial software infrastructure.

3



model’s path estimates for all four experiments, provided with contextual information
about each scenario. On average, the LLM predicts the path estimates are 13.2 times
larger than the experimental results. Its predictions are overestimates for 10 out of
12 of the paths, although they are generally in the correct direction.

We repeat the predict-yi task, but this time, we provide the LLM with the ex-
perimental path estimates. For each Xi, we fit the structural causal model using
all but the ith observation and then ask the LLM to predict yi given Xi and this
fitted model. In this “predict-yi|β̂−i” task, the predictions are far better than in the
predict-yi task without the fitted model. The mean squared error is six times lower,
and the predictions are much closer to those made by the theory, but they are still
further from the theory than they are to the simulations.

A natural question to ask in response to these results is whether there is any-
thing to find in such simulations that we do not already know. Evidence suggests
that LLMs do indeed possess latent information about human behavior that can be
systematically explored [11]. Despite an easy-to-describe objective—to predict the
next token in a sequence of text—these models have developed a remarkably sophis-
ticated model of the world, at least as captured in text [10, 23, 43]. And while there
are many situations where LLMs are imperfect proxies for humans [15, 52], there is
also a growing body of work demonstrating that experiments with LLMs as subjects
can predict human behavior in never-before-seen tasks [7, 34]. Rapid and automated
exploration of these models’ behavior could be a powerful tool to efficiently generate
new insights about humans. Our contribution is to demonstrate that it is possible
to create such a tool: a system that can simulate the entire social scientific process
without human input at any step.

2 Overview of the system

To perform this automated social science, we needed to build a system. The system
intentionally mirrors the experimental social scientific process. These steps are, in
broad strokes:

1. Social scientists start by selecting a topic or domain to study (e.g., misinfor-
mation, auctions, bargaining, etc).

2. Within the domain, they identify interesting outcomes and some causes that
might affect the outcomes. These variables and their proposed relationships
are the hypotheses.

3. They design an experiment to test these hypotheses by inducing variation in
the causes and measuring the outcomes.
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4. After designing the experiment, social scientists determine how they will ana-
lyze the data in a pre-analysis plan.

5. Next, they recruit participants, run the experiment, and collect the data.

6. Finally, they analyze the data per the pre-analysis plan to estimate the rela-
tionships between the proposed causes and outcomes.

While any given social scientist might not follow this sequence exactly, whatever
their approach may be, the first two steps should always guide the later steps—the
development of the hypothesis guides the experimental design and model estimation.
Of course, many social scientists must often omit steps 3-5 when a controlled exper-
iment is not possible, but they typically have some notion of the experiment they
would like to run.

To build our system, we formalized a sequence of these steps analogous to those
listed above. The system executes them autonomously. Since the system uses AI
agents instead of human subjects, it can always design and execute an experiment.

Structural causal models (SCM) are essential to the design of the system because
they make unambiguous causal statements, which allow for unambiguous estimation
and experimental design.3 Algorithms can determine precisely which variables must
be exogenously manipulated to identify the effect of a given cause [46]. If the first
two steps in the social scientific process are building the SCM, the last four can be
directly determined subject to the SCM. Such precision makes automation possible
as the system only relies on a few key early decisions. Otherwise, the space of possible
choices for the latter steps would explode, making automation infeasible.

The system is implemented in Python and uses GPT-4 for all LLM queries.
Its decisions are editable at every step. The overview in this section is a high-
level description of the system, but there are many more specific design choices and
programming details in Section A (Methods). For the purposes of most readers,
the high-level overview should be sufficient to understand the system’s process, the
results we present in Section 3, and the additional analyses in Sections 4.

The system takes as input some scenario of social scientific interest: a negotia-
tion, a bail decision, a job interview, an auction, and so on. Starting with (1) this
input, the system (2) generates outcomes of interest and their potential causes, (3)
creates agents that vary on the exogenous dimensions of said causes, (4) designs an

3We use simple linear SCMs unless stated otherwise. This assumption is not necessarily correct
but offers an unequivocal starting point to generate hypotheses. Functional assumptions can be
tested by comparing fitted SCMs with various forms using data generated from a known causal
structure. Section C in the appendix provides a more detailed explanation of SCMs.
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experiment, (5) executes the experiment with LLM-powered agents simulating hu-
mans, (6) surveys the agents to measure the outcomes, (7) analyzes the results of
the experiment to assess the hypotheses, which can be used to plan a follow-on ex-
periment. Figure 1 illustrates these steps, and we will briefly explore each in greater
depth.

Figure 1: An overview of the automated system.

Notes: Each step in the process corresponds to an analogous step in the social scientific process as

done by humans. The development of the hypothesis guides the experimental design, execution, and

model estimation. Researchers can edit the system’s decisions at any step in the process.

The first step is to generate hypotheses as SCMs based on the social scenario, the
scenario being the only necessary input to the system. This is done by querying an
LLM for the relevant agents and then interesting outcomes, their potential causes,
and methods to operationalize and measure both. We use Typewriter text to in-
dicate example output from the system. Suppose the social scenario is “two people
bargaining over a mug.” The LLM may generate whether a deal occurs for the

mug as an outcome, and operationalizes the outcome as a binary variable with

a ‘‘1’’ when a deal occurs and a ‘‘0’’ when it does not. It then gener-
ates potential exogenous causes and their operationalizations: the buyer’s budget,
which is operationalized as the buyer’s willingness to pay in dollars. The

6



system takes each of these variables, constructs an SCM (see the second step in Fig-
ure 1), and stores the relevant information about the operationalizations associated
with each variable.45 From this point on, the SCM serves as a blueprint for the rest
of the process, namely the automatic instantiation of agents, their interaction, and
the estimation of the linear paths.

The second step is to construct the relevant agents—the Buyer and the Seller

in Figure 1, step 3. By “construct,” we mean that the system prompts indepen-
dent LLMs to be people with sets of attributes. These attributes are the exogenous
dimensions of the SCM, dimensions that are varied in each simulation. I.e., the dif-
ferent experimental conditions. For the current scenario, a Budget is provided to the
buyer that can take on values of {$5, $10, $20, $40}. By simulating interactions
of agents that vary on the exogenous dimensions of the SCM, the data generated can
be used to fit the SCM.

Next, the system generates survey questions to gather data about the outcomes
from the agents automatically once each simulation is complete. An LLM can easily
generate these questions when provided with information about the variables in the
SCM (e.g., asking the buyer, “Did a deal happen?”). All LLM-powered agents in
our system have “memory.” They store what happened during the simulation in
text, making it easy to ask them questions about what happened.

Fourth, the system determines how the agents should interact. LLMs are designed
to generate text in sequence. Since independent LLMs power each agent, one agent
must finish speaking before the next begins. This necessitates a turn-taking protocol
to simulate the conversation. We programmed a menu of six ordering protocols, from
which an LLM is queried to select the most appropriate for a given scenario. We
describe each protocol in Section A, and they are presented in Figure A.2, but in
our bargaining scenario with two agents, there are only two possible ways for the
agents to alternate speaking. In this case, the system selects: speaking order:

(1) Buyer, (2) Seller, (step 4, Figure 1). The speaking order can be flexible in
more complex simulations with more agents, such as an auction or a bail hearing.

Now, the system runs the experiment. The conditions are simulated in parallel
(step 5 in Figure 1), each with a different value for the exogenous dimensions of the
SCM—the possible budgets for the buyer.

The system must also determine when to stop the simulations. There is no obvious

4The system generates several other pieces of information about each variable, which help guide
the experimental design and data analysis. See Section A for further details.

5The graph in the second step of Figure 1 is a directed acyclic graph (DAG). For convenience,
we will use DAGs to represent SCMs throughout the paper and assume they imply a simple linear
model unless stated otherwise.
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rule for when a conversation should end. Like the halting problem in computer
science—it is impossible to write a universal algorithm that can determine whether
a given program will complete [57]—such a rule for conversations does not exist.
We set two stopping conditions for the simulations. After each agent speaks in a
simulation, an external LLM is prompted with the transcript of the conversation and
asked if the conversation should continue. If yes, the next agent speaks; otherwise,
the simulation ends. Additionally, we limit the total number of agent statements
to twenty. One could imagine doing something more sophisticated both with the
social interactions and the stopping conditions in the future. This is even a place for
possible experimentation as the structure of social interactions can impact various
outcomes of interest [30, 48, 51].

Finally, the system gathers the data for analysis. Outcomes are measured by
asking the agents the survey questions (Figure 1, step 6) as determined before the
experiment. The data is then used to estimate the linear SCM. For our negotiation,
that would be a simple linear model with a single path estimate (i.e., linear coef-
ficient) for the effect of the buyer’s budget on the probability of a deal—the final
step in Figure 1. Note that an SCM specifies, ex-ante, the exact statistical analyses
to be conducted after the experiment—akin to a pre-analysis plan. This step of the
system’s process is, therefore, mechanical.

The system, as outlined, is automated from start to finish—the SCM and its
accompanying metadata serve as a blueprint for the rest of the process. Once there
is a fitted SCM, this process can be repeated. Although we have not automated
the transition from one experiment to the next, the system can generate new causal
variables, induce variations, and run another experiment based on the results of the
first.

3 Results of experiments

We present results for four social scenarios explored using the system. In the first two
scenarios, our involvement in the system’s process was restricted to entering the de-
scription of the scenario and then the entire process was automated. In the third and
fourth scenarios, we selected the hypotheses and edited some of the agents, but the
system designed and executed the experiments. We intervened in the latter scenarios
not because the system is incapable of simulating these scenarios autonomously, but
to demonstrate the system’s capacity to accommodate human input at any point
while still generating exciting results.
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3.1 Bargaining over a mug

We first use the system to simulate “two people bargaining over a mug”—this phrase
being in quotes because it was the only input needed for the system to simulate the
following process. The system selected a buyer and seller as the relevant agents,
the outcome as whether a deal occurs, and the buyer’s budget, the seller’s mini-
mum acceptable price, and the seller’s emotional attachment to the mug as potential
causes.

Table 2a provides the information generated by the system about the SCM and
the experimental design. The topmost row, simulation details, provides high-level
information about the structure of the simulation. The remaining rows provide
information about the variables in the SCM and how they were operationalized. The
system automatically generated all this information by iteratively querying the LLM.

The three exogenous variables were operationalized as the buyer’s budget in dol-
lars, the seller’s minimum acceptable price in dollars, and the seller’s emotional
attachment as an ordinal scale from “no emotional attachment” to “extreme emo-
tional attachment.” The system chose nine values (the “Attribute Treatments” in
Table 2a) to vary for each of the first two causes and five for the seller’s feelings of
love towards the mug (one for each level of the scale). This led to 9 × 9 × 5 = 405
experimental runs of the simulated conversation between the buyer and seller.

Figure 2b provides the fitted SCM. The outcome variable is given with its mean
and variance. The raw path estimates and their standard errors are shown on the
arrows. For ordinal variables (e.g., the seller’s feelings of love), we treat the levels as
numerical values. The buyer and seller reached a deal for the mug in roughly half
of the simulations, and all three causes had a statistically significant effect on the
probability of a deal.

A one-dollar increase in the buyer’s budget caused an average increase of 3.7
percentage points in the probability of a deal (β̂* = 0.51, p < 0.001).6 A one-dollar
increase in the seller’s minimum acceptable price caused an average decrease of 3.5
percentage points in the probability of a deal occurring (β̂* = −0.49, p < 0.001).
Finally, a one-unit increase in the ordinal scale of the seller’s love for the mug, such
as going from moderate emotional attachment to high emotional attachment, caused
an average decrease of 2.5 percentage points in the probability of a deal (β̂* = −0.07,
p = 0.044).

6We report standardized effect size estimates with β̂*. Standardized effect sizes being “a one
standard deviation increase in X causes a β̂* standard deviation increase in Y.”
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Figure 2: Experimental design and fitted SCM for “two people bargaining over a
mug.”

SIMULATION DETAILS

Agents: Buyer, Seller

Simulations Run: 9× 9× 5 = 405

Speaking Order: Buyer, Seller, Buyer, ...repeat

VARIABLE INFORMATION

Whether or not a deal occurs
Measurement Question: coordinator: “Did the
buyer and seller explicitly agree on the price of the mug
during their interaction?”
Variable Type: Binary

Buyer’s Budget
Attribute Treatments: [‘3’, ‘6’, ‘7’, ‘8’, ‘10’, ‘13’,
‘18’, ‘20’, ‘25’]
Proxy Attribute: Your budget for the mug

Variable Type: Continuous

Seller’s minimum acceptable price
Attribute Treatments: [‘3’, ‘5’, ‘7’, ‘8’, ‘10’, ‘13’,
‘18’, ‘20’, ‘25’]
Proxy Attribute: Your minimum acceptable price for
the mug
Variable Type: Continuous

Seller’s feelings of love towards the mug
Attribute Treatments: [‘no emotional attachment’,
‘slight emotional attachment’, ‘moderate emotional at-
tachment’, ‘high emotional attachment’, ‘extreme emo-
tional attachment’]
Proxy Attribute: Your feelings of love for the mug

Variable Type: Ordinal

(a) Information for experimental design

Deal
Occurs
µ = 0.5
σ2 = 0.25

Buyer
Budget

Seller Min

Seller Love

0.037
(0.003)

-0.035
(0.002)

-0.025
(0.012)

(b) Fitted SCM

Notes: Figure 2a provides the information automatically generated by the system to execute the

experiment for its proposed hypothesis. This includes the high level structure of the simulations,

how the outcome is measured, and the treatment variations for each of the causes. The fitted SCM

in Figure 2b shows the results of the experiment. The outcome is given with its mean and variance.

The edges are labeled with their unstandardized path estimate and standard error. We assume a

simple linear model for the SCM, such that the above graph can also be written as DealOccurs =

0.037BuyerBudget− 0.035MinPrice− 0.025SellerLove.
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3.2 A bail hearing

Next, we explore “a judge is setting bail for a criminal defendant who committed
50,000 dollars in tax fraud.” Table 3a shows that the system selected a judge,
defendant, defense attorney, and prosecutor as the relevant agents. In this scenario,
the system selected a more flexible interaction protocol than the one used in the
previous experiment. The judge was chosen as a center agent and, in order, the
prosecutor, defense attorney, and defendant as the non-center agents. This means
the judge spoke first in every simulation, alternating with the other agents: judge,
prosecutor, judge, defense attorney, judge, defendant, and so on. As described in
Section A.3, we call this the “center-ordered” interaction protocol.

Figure 3: Experimental design and fitted SCM for “a judge is setting bail for a
criminal defendant who committed 50,000 dollars in tax fraud.”

SIMULATION DETAILS

Agents: Judge, Defendant, Defense attorney, Prosecutor

Simulations Run: 7× 7× 5 = 243

Speaking Order: Judge, Prosecutor, Judge,

Defense Attorney, Judge, Defendant, ... repeat

VARIABLE INFORMATION

Bail amount set by the judge
Measurement Question: Judge: “What was the bail
amount you set for the defendant?”
Variable Type: Continuous

Defendant’s criminal history

Attribute Treatments: [‘0’, ‘1’, ‘2’, ‘3’, ‘6’, ‘9’, ‘12’]

Proxy Attribute: Number of your prior convictions

Variable Type: Count

Prior case count for judge that day
Attribute Treatments: [‘0’, ‘2’, ‘5’, ‘9’, ‘12’, ‘18’,
‘23’]
Proxy Attribute: Number of cases you have already
heard today
Variable Type: Count

Defendant’s level of remorse
Attribute Treatments: [‘no expressed remorse’, ‘low
expressed remorse’, ‘moderate expressed remorse’, ‘high
expressed remorse’, ‘extreme expressed remorse’]
Proxy Attribute: Your level of expressed remorse

Variable Type: Ordinal

(a) Information for experimental design

Bail
Amount
µ =

54428.57
σ2 = 1.9e7

Criminal
History

Judge Case
Count

Defendant’s
Remorse

521.53
(206.567)

-74.632
(109.263)

-1153.061
(603.325)

(b) Fitted SCM

Notes: Figure 3a provides the information automatically generated by the system to execute the

experiment for its proposed hypothesis. Figure 3b shows the fitted SCM from the experiment.

The system chose the outcome to be the final bail amount, and the three pro-
posed causes as the defendant’s criminal history, the number of cases the judge has
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already heard that day, and the defendant’s level of remorse. The number of cases
the judge already heard that day and the defendant’s level of remorse are opera-
tionalized literally, as the count of cases the judge has heard and five ordinal levels
of possible outward expressions of remorsefulness. The defendant’s criminal history
is operationalized as the number of previous convictions.

In the fitted SCM in Figure 3b, only the defendant’s criminal history had a
significant effect on the final bail amount with each additional conviction causing an
average increase of $521.53 in bail (β̂* = 0.16, p = 0.012). It is unclear whether
the defendant’s remorse affected the final bail amount. The effect size was small but
non-trivial with borderline significance (β̂* = −0.12, and p = 0.056).

When we estimated the SCM with interactions, the interaction between the
judge’s case count and the defendant’s remorse was nontrivial (β̂* = −0.32, p =
0.047). In this specification (Figure A.7), none of the other interactions or the stand-
alone causes have a significant effect, including the defendant’s criminal history.

3.3 Interviewing for a job as a lawyer

In our third simulated experiment, we chose the scenario “a person interviewing for
a job as a lawyer.” The system determined that a job applicant and an employer
were the agents. Unlike the previous simulations, we manually selected the variables
in the SCM. Table 4a shows that these were the employer’s hiring decision as the
outcome and whether the applicant passed the bar, the interviewer’s friendliness,
and the job applicant’s height as the potential causes.

The system operationalized the causes as a binary variable for passing the bar,
the job applicant’s height in centimeters, and the interviewer’s friendliness as the
proposed number of friendly phrases to use during the simulation. Since one of the
causes is a binary variable, the only potential cause in all our scenarios of this type,
the sample size for the experimental simulations of this scenario is smaller (n = 80).
By default, the system runs a factorial experimental design for all proposed values
of each cause. With only two possible values for the job applicant passing the bar
(as opposed to 5 varied treatment values for the interviewer’s friendliness and 8 for
the applicant’s height), this limits the possible combinations of the causal variables
to 2 × 5 × 8 = 80. A researcher could run more simulations to increase the sample
size if so desired.

We can see in Figure 4b that only the applicant passing the bar has a clear causal
effect on whether the applicant gets the job. This is the largest standardized effect we
see across the simulations in the four scenarios (β̂* = 0.78, p < 0.001). On average,
whether or not the applicant passes the bar increases the probability she gets the job
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Figure 4: Experimental design and fitted SCM for “a person is interviewing for a
job as a lawyer.”

SIMULATION DETAILS

Agents: Interviewer, Job Applicant

Simulations Run: 2× 5× 8 = 405

Speaking Order: Interviewer, Job Applicant,

Interviewer, ...repeat

VARIABLE INFORMATION

Employer’s Decision
Measurement Question: Employer: “Have you de-
cided to hire the job applicant?”
Variable Type: Binary

Whether Applicant Passed Exam

Attribute Treatments: [‘Passed’, ‘Not’]

Proxy Attribute: Your bar exam status

Variable Type: Binary

Interviewer’s level of friendliness

Attribute Treatments: [‘2’, ‘7’, ‘12’, ‘17’, ‘22’]
Proxy Attribute: Number of positive phrases to use
during interview
Variable Type: Count

Job applicant’s height
Attribute Treatments: [‘160’, ‘165’, ‘170’, ‘175’,
‘180’, ‘185’, ‘190’, ‘195’]
Proxy Attribute: Your height in centimeters

Variable Type: Continous

(a) Information for experimental design

Employer
Decision
µ = 0.62
σ2 = 0.24

Passed Bar

Interviewer
Friend-
liness

Applicant
Height

0.75
(0.068)

-0.002
(0.005)

0.003
(0.003)

(b) Fitted SCM

Notes: Figure 4a provides the information automatically generated by the system to execute the

experiment for the proposed hypothesis. Figure 4b shows the fitted SCM from the experiment.
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by 75 percentage points. When we test for interactions, none are significant (Figure
A.8).

3.4 An auction for a piece of art

Finally, we explored the scenario of “3 bidders participating in an auction for a piece
of art starting at fifty dollars.” Table 5a shows that the causes are each bidder’s
maximum budget for the piece of art, and the outcome is the final price of the piece
of art—all of which we selected.

Figure 5: Experimental design and fitted SCM for “3 bidders participating in an
auction for a piece of art starting at fifty dollars.”

SIMULATION DETAILS

Agents: Bidder 1, Bidder 2, Bidder 3, Auctioneer

Simulations Run: 7× 7× 7 = 343

Speaking Order: Auctioneer, Bidder 1, Auctioneer,

Bidder 2, Auctioneer, Bidder 3, ... repeat

VARIABLE INFORMATION

Final price
Measurement Question: Auctioneer: “What was
the final bid for the piece of art at the end of the auc-
tion?”
Variable Type: Continuous

Bidder 1’s maximum budget
Attribute Treatments: [‘$50’, ‘$100’, ‘$150’, ‘$200’,
‘$250’, ‘$300’, ‘$350’]
Proxy Attribute: Your max budget for the art

Variable Type: Continuous

Bidder 2’s maximum budget
Attribute Treatments: [‘$50’, ‘$100’, ‘$150’, ‘$200’,
‘$250’, ‘$300’, ‘$350’]
Proxy Attribute: Your max budget for the art

Variable Type: Continuous

Bidder 3’s maximum budget
Attribute Treatments: [‘$50’, ‘$100’, ‘$150’, ‘$200’,
‘$250’, ‘$300’, ‘$350’]
Proxy Attribute: Your max budget for the art

Variable Type: Continuous

(a) Information for experimental design

Final Price
µ = 186.53
σ2 = 3879.23

Bidder 1
Budget

Bidder 2
Budget

Budder
3 Budget

0.35
(0.015)

0.29
(0.015)

0.31
(0.015)

(b) Fitted SCM

Notes: Figure 5a provides the information automatically generated by the system to execute the

experiment for the proposed hypothesis. Figure 5b shows the fitted SCM from the experiment.

All four variables are operationalized in dollars. To maintain symmetry in the
simulations, we also manually selected the same proxy attribute for the three bidders:
“your maximum budget for the piece of art.” Each bidder had the same seven
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possible values for their attribute, leading to 73 = 343 simulations of the auction. It
is important to note that these budgets are private values. Unless a bidder publically
reveals their budget, the other bidders do not know what it is.

Like the tax fraud scenario, the system chose the center-ordered interaction pro-
tocol for these simulations. The auctioneer was selected as the central agent, and
the other agents were bidder 1, bidder 2, and bidder 3, who alternated with the
auctioneer in that order.

Figure 5b provides the results. All three causal variables had a positive and
statistically significant effect on the final price. A one-dollar increase in any of the
bidder’s budgets caused a $0.35, $0.29, and $0.31 increase in the final price for the
piece of art for each respective bidder (β̂* = 0.57, p < 0.001; β̂* = 0.47, p < 0.001;
β̂* = 0.5 p < 0.001). These quantities make sense as each bidder has a 1

3
chance of

being marginal.

4 LLM predictions for paths and points

It is worth reiterating that the results in the previous section were not generated
by directly prompting an LLM, but rather through experimentation. Although the
experiments were fast and inexpensive, they were not free–in total, they took about
5 hours to run and cost over $1,000. This raises the question of whether the simu-
lations were even necessary. Could an LLM do a “thought experiment” (i.e., make
a prediction based on a prompt) about a proposed in silico experiment and achieve
the same insight? If so, we should just prompt the LLM to come up with an SCM
and elicit its predictions about the relationships between the variables.

To test this idea, we describe some of the simulations to the LLM and ask it to
predict the results—path estimates and point predictions.7 Specifically, we modeled
each scenario as y = Xβ, where y is an n × 1 vector and X is a n × k matrix.
Here, n is the number of simulations, and k is the number of proposed causes. The
experiments from Section 3 provided us with estimates for β̂ (a k × 1 vector). We
describe the scenario and the experiment to the LLM and ask it to independently
predict yi given each Xi (a predict-yi task) as well as to predict β̂ (a predict-β̂ task).

The LLM’s yi predictions are highly inaccurate compared to those from auction
theory, which predicts that the clearing price will be the second highest valuation in
an open-ascending price auction with private values [36]. The LLM is also unable to
accurately predict the path estimates (β̂) of the fitted SCM. Finally, we examine how

7All predictions are made by the LLM once at temperature 0. When we elicit these predictions
many times at higher temperatures, the results are similar.
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the LLM does on the predict-yi task when provided with an SCM fit on all of the
data except for the corresponding Xi (the predict-yi|β̂−i task). While the additional
information dramatically improves the LLM’s predictions, they are still less accurate
than those made by auction theory.

4.1 Predicting yi

For various bidder reservation price combinations in the auction experiment, we
supply the LLM with a prompt detailing the simulation and experimental design.8

We then ask the LLM to predict the clearing price for the auction. This gives us a
point prediction for each simulated auction (i.e., each unique row Xi in X) used to
generate the fitted SCM in Figure 5b.

Figure 6 presents a comparison of the LLMs predictions, the simulated exper-
iments, and the predictions made by auction theory.9 The columns correspond to
the different reservation values for bidder 3 in a given simulation, and the rows cor-
respond to the different reservation values for bidder 2. The y-axis is the final bid
price, and the x-axis lists bidder 1’s reservation price. The black triangles track the
observed clearing price in each simulated experiment, the black line shows the pre-
dictions made by auction theory, and the blue line indicates the LLM’s predictions
without the fitted SCM—the predict-yi task.

The LLM performs poorly at the predict-yi task. The blue line is often far
from the black triangles and sometimes remains constant or even decreases as the
second-highest reservation price across the agents increases. In contrast, auction
theory is highly accurate in its predictions of the final bid price in the experiment—
the black line often perfectly tracks the black triangles.10 The mean squared error
(MSE) of the LLM’s predictions in the predict-yi task (MSEyi = 8628) is an order of
magnitude higher than that of the theoretical predictions (MSETheory = 128), and
the predictions are even further from the theory than they are from the empirical
results (MSEyi−Theory = 8915).11

8In 80/343 simulations, the agents made the maximum number of statements (20) allowed by
the system before the auction ended. We remove these observations because, without additional
information, auction theory does not make predictions about partially completed auctions.

9We provide only a subset of the results in the main text as it is difficult to visualize all of them
in a single figure. Figure A.12 shows the full set of predictions. The results are generally the same.

10There are a few observations where the empirical clearing price is slightly above or below the
theory prediction. In most cases where it was off, this was due to the auctioneer incrementing the
bid price above the second-highest reservation price in the last round.

11MSE is reported for all predictions, not just the subset shown in Figure 6.
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Figure 6: Comparison of the LLM’s predictions to the theoretical predictions and a
subset of experimental results for the auction scenario.
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and the rows correspond to the different reservation values for bidder 2. The y-axis is the clearing

price, and the x-axis lists bidder 1’s reservation price. The black triangles track the observed clearing

price in each simulated experiment, the black line shows the predictions made by auction theory

(MSETheory = 128), the blue line indicates the LLM’s predictions without the fitted SCM—the

predict-yi task (MSEyi = 8628), and the red line is the LLM’s predictions with the fitted SCM—the

predict-yi|β̂−i task (MSEyi|β̂−i
= 1505).
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4.2 Predicting β̂

We prompted the LLM to predict the path estimates and whether they would be
statistically significant for the simulated experiments in Section 3. This is the predict-
β̂ task. We then compare the LLM’s predictions to the fitted SCMs. With four
experiments and three causes in each, we generate 12 predictions.

We provide the LLM with extensive information to make its predictions for each
experiment.12 This information includes the proposed SCM, the operationalizations
of the variables, the number of simulations, and the possible treatment values. Each
prediction is elicited once at temperature 0.

The predictions are shown in Table A.1. They were, on average, 13.2 times larger
than the actual estimates, and 10/12 of the predictions were overestimates. Even
when we remove the largest overestimate, the average magnitude of the ratio between
the predicted and actual estimates is still 5.3. The sign of the estimate was correct
in 10/12 predictions, and 10/12 correctly guessed whether or not the estimate would
be statistically significant. When we repeat the predictions at a higher temperature
and take their average, the results are similar (see Table A.2).

4.3 Predicting yi|β̂−i
The LLM was, on average, off by an order of magnitude for both the predict-yi task
and the predict-β̂ task, but maybe it can do better with more information. For each
Xi in the auction simulations, we use the data from the experiment to estimate β̂−i,
the path estimates from the SCM excluding the ith observation. We then prompt
the LLM to predict the outcome for each Xi given β̂−i.

The red line in Figure 6 provides these new predictions. The LLM’s predic-
tions are much closer to the actual outcomes when it has access to a fitted SCM
(MSEyi|β̂−i

= 1505) as opposed to when it does not (MSEyi = 8628), even though
all the predictions are out of sample and every Xi is unique.

However, the LLM’s predictions on the predict-yi|β̂−i task are still not as accurate
as the predictions made by auction theory (MSETheory = 128).13 They are also still
further from the theory than they are from the empirical results (MSEyi|β̂−i−Theory =

1761). There is clearly room for improvement. That improvement is feasible with
the system: there exists an SCM perfectly consistent with auction theory. Only one

12See Figure A.13 in the appendix for the full prompt.
13It is also less accurate than the mechanical predictions made by the fitted SCM using the same

procedure MSEMechanistic:yi|β̂−i
= 725. Maybe the LLM cannot do the math, is still conditioning

on other information beyond the path estimates when making its predictions, or, like humans, is
ignoring relevant information when making choices [26].
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exogenous variable was missing: the second-highest reservation price of the bidders.
If allowed to generate and test enough potential causes, our system could have se-
lected this variable as a possible cause by itself. In this case, the fitted SCM would
have matched the theoretical predictions.14

5 Discussion

How might systems such as the one presented in this paper be useful for social science
research? One view is that these kinds of simulations are simple dress rehearsals for
“real” social science. A more expansive and exciting view is that the LLM agents
are close enough stand-ins for human subjects that these simulations would yield
insights that generalize to the real world.

This is a view that sees these agents as a step forward in representing humans
far beyond classical methods in agent-based modeling, such as those used to explore
how individual preferences can lead to surprising social patterns [53, 54]. This view
would mirror recent advances in the use of machine learning for protein folding [31]
and material discovery [39].

The system presented in this paper can generate these controlled experimen-
tal simulations en masse with prespecified plans for data collection and analysis.
That contrasts most academic social science research as currently practiced [2]. This
contrast is important. In the social sciences, context can heavily influence results.
Outcomes that hold true for one population may not for another. Even within the
same population, a change in environment can nullify or flip results [33]. Studying
humans is also expensive and time-consuming, which makes rapid, inexpensive, and
replicable exploration valuable. There is still, of course, the fundamental jump from
simulations to human subjects.

5.1 Interactivity

The system allows a scientist to monitor its entire process. Should a researcher
disagree with or be uncertain about a decision made by the system, they can probe
the system regarding its choice. This allows the researcher to either (1) understand
why the decision was made, (2) ask the system to come up with a different option
for that decision, or (3) input their own custom choice for that decision.

14When we do fit this SCM (see Figure A.11), the coefficient is close to one (β = 0.912), and
almost all the variance in the outcome is explained (R2 = 0.977).
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A researcher can even ignore much of the automation process and fill in the details
themselves. They can choose the variables of interest, their operationalizations, the
attributes of the agents, how the agents interact, or customize the statistical analysis,
among other decision points.

5.2 Replicability

Replicating social science experiments with human subjects can be difficult [14].
Despite the use of preregistrations, the exact procedures used in experiments are often
unclear [18]. In contrast, the system allows for nearly frictionless communication and
replication of results.

The system’s entire procedure is exportable as a JSON (JavaScript Object Nota-
tion) file with a CSV file of the data and results. This JSON includes every decision
the system makes, including natural language explanations for the choices and the
transcripts from each simulation. These JSONs can be saved or uploaded at any point
in the system’s process. A researcher could run experiments and post the JSON and
results online. Other scientists could inspect, perfectly replicate the experiment, or
extend the work.

6 Conclusion

This paper presents a succesful approach to automated in silico hypothesis gener-
ation and testing made possible through the use of SCMs. We implemented the
approach by building a computational system with LLMs and provided evidence
that simulations can be used to elicit information from an LLM that was not ex-ante
available to the model. We also showed that such simulations produce results highly
consistent with theoretical predictions made by the relevant economic theory.

The system in this paper provides only one possible implementation of the SCM-
based approach. We made many subjective decisions. Other researchers might im-
plement the approach with different design choices. There is room for improvement
and exploration.
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A Methods

The first step in the system’s process is to query an LLM for the roles of the relevant
agents in the scenario. When we say “query an LLM,” we mean this quite literally.
We have written a scenario-neutral prompt that the system provides to an LLM with
the scenario added to the prompt. The prompt is scenario-neutral because we can
reuse it for any scenario. The prompt takes the following format:

In the following scenario: “{scenario description}”, Who are the in-
dividual human agents in a simple simulation of this scenario?

where {scenario description} is replaced with the scenario of interest. The LLM
then returns a list of agents relevant to the scenario, and we have various checking
mechanisms to ensure the LLM’s response is valid.

The system contains over 50 pre-written scenario-neutral prompts to gather all
the information needed to generate the SCM, run the experiment, and analyze the
results. These prompts have placeholders for the necessary information aggregated
in the system’s memory as it progresses through the different parts of the process.

A.1 Constructing variables and drawing causal paths

The system builds SCMs variable-by-variable. It queries an LLM for an outcome
involving the agents in the social scenario of interest. We refer to outcomes as
endogenous variables because their values are realized during the experiment. This
is in contrast to exogenous variables, the causes, whose values are determined before
the experiment.

The system queries the LLM for a list of possible exogenous causes of the en-
dogenous variable, generating a hypothesis as an SCM.15 Exogenous variables serve
as inputs to the experiment, whose values can be deterministically manipulated to
identify causal effects. The system assumes that when an exogenous variable causes
an endogenous variable, a single causal path is proposed from the exogenous variable
to the endogenous variable. More formally, the system always generates SCMs as a
simple linear model. The system currently generates all SCMs with one endogenous
variable and as many exogenous causes as a researcher desires. We do little optimiza-
tion here, although the system can test for interaction terms. In future iterations
of the system, a researcher could choose outcomes and causes they are interested

15There is growing evidence that LLMs can be quite good at coming up with ideas and generating
hypotheses [22, 49].
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in, score hypotheses by interestingness, and generate more complex hypotheses with
mediating endogenous variables.16

A.1.1 Endogenous outcomes

For each endogenous variable, the system generates an operationalization, a type, the
units, the possible levels, the explicit questions that need to be asked to measure the
variable’s realized value, and how the answers to those questions will be aggregated
to get the final data for analysis. Examples of all information collected about the
variables in an SCM are provided in Table A.3. Each piece of information about a
variable is stored by the system and is then used to determine subsequent informa-
tion in consecutive scenario-neutral prompts. This is a kind of “chain-of-thoughts
prompting”, or the process of breaking down a complex prompt into a series of sim-
pler prompts. This method can dramatically improve the quality and robustness of
an LLM’s performance [60].

The first piece of information determined for each endogenous variable is the oper-
ationalization. That is, how to directly map the possible realizations of said variable
to measurable outcomes that can be observed and quantified. Suppose the outcome
variable is whether or not a deal occurred from the SCM in Figure 2b.17 The
system could operationalize this as a binary variable, where ‘‘1’’ means a deal

occurred and ‘‘0’’ does not. It then stores this information and uses it in a
scenario-neutral prompt to choose the variable type.

All variables are determined to be one of five mutually exclusive “types.” These
are continuous, ordinal, nominal, binary, or count. By selecting a unique type for
each variable, the system can accommodate different distributions when estimating
the fitted SCM after the experiment.

Each variable also has units. The units are the specific measure or standard used
to represent the variable’s quantified value. This information is used to improve the
robustness and consistency of the system’s output when querying the LLM for other
information about a variable.

The levels of the variable represent all of the values the variable can realize in
a short list. They can take on different forms depending on the variable type, but
they all follow a general pattern where they are defined by the range and nature of

16Parallel and crossover experimental designs can be used to identify mediating causal rela-
tionships [29]. These experiments require few assumptions, which are often more plausible when
researchers have more control over the experiment, as they usually do with LLMs.

17We continue the practice from Section 2 of using typewriter text to denote example infor-
mation from the system.
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a variable’s possible values.18

To measure the endogenous outcome, the system generates survey questions for
one of the agents. For example, to measure whether or not a deal occurred,
the system could ask the buyer or the seller, “Did you agree to buy the mug?”
Or, if the endogenous variable was the final price of the mug, the system could
ask one of the agents, “How much did you sell the mug for?” Even though the
simulations have yet to be conducted, the system generates survey questions. As
with pre-registration, this reduces unneeded degrees of freedom in the data collection
process after the experiment.

Most endogenous variables are measured with only one question. In this case,
the answer to this question is the only information needed to quantify the variable.
Sometimes, it takes more than one survey question to measure a variable. Maybe the
variable is the average satisfaction of the buyer and the seller; a variable
that requires two separate measurements to quantify. In this case, the system gener-
ates separate measurement questions to elicit the buyer’s and the seller’s satisfaction.
Then, the system averages the answers to the questions to measure the variable.

We pre-programmed a menu of 6 mechanical aggregation methods: finding the
minimum, maximum, average, mode, median, or sum of a list of values. If the system
needs to combine the answers to multiple questions to measure a variable, it queries
an LLM to select the appropriate aggregation method. Then, the system uses a
pre-written Python function to perform said aggregation. We refrain from asking
the LLM to perform mathematical functions whenever possible, as they often make
mistakes.

A.1.2 Exogenous causes

Besides the explicit measurement questions and data aggregation method, the system
collects the same information for the exogenous variables as it does for the endogenous
variables. For exogenous variables, these two pieces of information are unnecessary
for measurement. In each simulation of the social scenario, a different combination

18For binary variables, the levels are the two possible outcomes. For nominal variables, the
levels comprise the categories representing different groups or types the variable can realize. A
category labeled “other” (or an equivalent term) is always included to account for any values that
do not fit into the specified categories. For example, if a nominal variable was “the color of the
agent’s hair,” the levels might be: {Brown,Blond,Black,Grey,White,Other}. For ordinal variables,
the levels include all possible values that the ordinal variable could take on as determined by its
operationalization. The levels are selected for count and continuous variables by segmenting the
range of possible values into discrete intervals. In cases where the variable does not have a defined
maximum or minimum, categories such as “above X” or “below Y” are included to ensure all
possible values are covered.
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of the values of the exogenous variables is initialized. This is how the system induces
variation in an experiment, so the treatments are always known to the system ex-
ante.

Causal variables can have one of two possible “scopes.” The scope can be specific
to an individual agent or the scenario as a whole. This scope determines how the
system induces variation in the exogenous variables—at the agent or scenario level.
Individual-level variables are further designated as either public or private. If private,
the variable’s values are only provided to one agent; if public, they are treated as
common knowledge to all agents in the scenario.

The system induces variation in the exogenous variables by transforming them
into manageable proxy attributes for the agents. The system queries an LLM to cre-
ate a second-person phrasing of the operationalized variable provided to the agent
(or agents, depending on the scope). For instance, with the buyer’s budget vari-
able, the attribute could be “your budget” for the buyer. These attributes will be
assigned to the agents, which we discuss in Section A.2.

With the proxy attribute for the variable, the system queries an LLM for possible
values the attribute can take on. These are the induced variations—the treatment
conditions for the simulated experiments. By default, the system uses the levels, or a
value within each level, of the variable for the possible variation values. For example,
these could be {$5, $10, $20, $40} for the buyer’s budget.

A.2 Building hypothesis-driven agents

In conventional social science research, human subjects are catch as catch can. Here,
we have to construct them from scratch. By “construct” we mean that we prompt
an LLM to be a person with a set of attributes. This is quite literal; for example,
we could construct an agent in a negotiating scenario with the following prompt:

“You are a buyer in a negotiation scenario with a seller. You are negoti-
ating over a mug. You have a budget of $20.”

We can construct an agent with any set of attributes we want, which raises the
question of what attributes we should use.

We already have the attributes that will be varied to test the SCM, but there are
many others we could include. Some work has explored the endowing of agents with
many different attributes, but it is unclear what is optimal, sufficient, or even neces-
sary.19 We take a minimalist approach, endowing our agents with goals, constraints,
roles, names, and any relevant proxy attributes for the exogenous variables. In the

19The methods have varied, ranging from endowing agents with interesting attributes [3, 28] to
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future, we could integrate large numbers of diverse agents, perhaps constructed to
be representative of some specific population.

A.2.1 Assigning agents attributes

The system collects information for agents independently, similar to its one-at-a-time
approach with the variables in the SCM. The system randomly selects an agent,
determines its attributes, and then moves on to the next agent.20 Examples of buyer
and seller agents with their attributes are provided in Figure A.1.

Figure A.1: Example agents generated by the system for “two people bargaining
over a mug”

Notes: In all simulations, agents are endowed with a randomly generated name, role, goal, con-

straint, and proxy attributes for the exogenous variables. To simulate the experiment for the agents

in this figure, the system will generate four versions of the seller and four versions of the buyer,

each with one of the values for the exogenously varied attributes (assuming there are four possible

values for “Your sentimental attachment”). That is 4× 4 = 16 treatments.

using American National Election Study data to create “real” people [58] to demonstrating that
endowing demographic information does not necessarily represent a population of interest [4, 52].
There is a balance to be struck. While attributes can provide a rich and nuanced simulation,
they can also lead to redundancy, inefficiency, and unexpected interactions. In contrast, too few
attributes might result in an oversimplified and unrealistic portrayal of social interactions.

20The system already has the agent’s roles from the construction of the SCM.
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For each agent, the system queries the LLM for a random name. Agents perform
better in simulations with identifiers to address one another, although this feature
can be disabled. An agent’s name can also be varied as a proposed exogenous cause.
The system then queries an LLM again, this time for a goal and then a constraint,
which we discuss in the following subsection.

Finally, the system cross-checks the values of the proxy attributes between the
agents to ensure they overlap appropriately. For example, if the two exogenous vari-
ables in the SCM were the buyer’s budget and the seller’s minimum acceptable

price, the system would check to make sure that the seller’s minimum acceptable

price is not invariably higher than the buyer’s budget. We let the LLM deter-
mine if these attribute values overlap appropriately. If any discrepancies are found,
the system queries the LLM again to resolve them with new values for the proxy
attributes. Otherwise, the simulated experiment would waste time and resources
because the induced variations were not supported across reasonable values. For ex-
ample, if the buyer’s budget was always below the seller’s minimum acceptable

price, then they might never make a deal.

A.2.2 The importance of agent goals

Unlike, say, economic agents, whose goals are expressed via explicit utility func-
tions, the LLM agent’s goals are expressed in natural language. In the context of
our bargaining scenario, an example goal generated by our system for the seller
is to sell the mug at the highest price possible. An example constraint is
to not accept a price below your minimum selling price. These goals and
constraints are oriented towards value, but they do not have to be; these are merely
the ones generated by the system. A constraint could just have easily been do not

ruin your reputation with your negotiating partner.
We do not take a prescriptive stance on what these goals should be. We let the

system decide what is reasonable. These goals can, of course, also be the object of
study in their own right; researchers can vary them or choose their own, but they are
seemingly fundamental to any social science for reasons laid out in [56]. Therefore,
explicit goals are a requirement for agents in our system.

A.3 Simulation design and execution

LLMs are designed to produce text. And since an independent LLM powers each
agent, one agent must finish speaking before the next begins. So, in any multi-agent
simulation, there must be a speaking order, which raises the question of how the
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system should determine this speaking order. Unfortunately, most human conver-
sations do not have an obvious order; people collectively figure out how to interact.
We centralize this process, but we could imagine a consensus protocol for who speaks
next.

In more straightforward settings with only two agents (e.g., two people bargaining
over a mug), the only possible conversational order is for the agents to alternate
speaking. As the number of agents in interaction increases beyond two, the number
of possible speaking orders grows factorially. For example, with three agents, there
are 3! = 6 ways to order them; with 4 agents, 4! = 24 orderings, and so on. However,
the number of possible orderings of the agents is only part of the complexity.

Who speaks next in a given conversation is a product of the participants’ per-
sonalities, the setting of the conversation, the social dynamics between the speakers,
the emotional state of the participants, and many other factors. They are also
adaptive—often, the speaking order changes throughout a conversation. For exam-
ple, in a court proceeding, the judge usually guides the interaction—signaling who
speaks between the lawyers, witnesses, and the jury. Each contributes at various
and irregular intervals depending on both the type and stage of the proceeding. In a
family of two parents and two children, the order of who speaks next varies greatly.
It might depend on the parents’ moods or how annoying the children have been that
day. In contrast, the teacher is typically the main speaker in a high school classroom,
although this varies depending on the classroom activity, such as a lecture versus a
group discussion. No simple universal formula exists for who speaks next in such
diverse settings.

Like the aggregation methods for outcomes determined by multiple measurement
questions, we designed a menu of six interaction protocols. The system queries an
LLM to select the appropriate protocol for a given scenario. Figure A.2 provides the
menu, and we discuss each in turn.

A.3.1 Turn-taking protocols

The first interaction protocol is the ordered protocol (Figure A.2, option 1), where
the agents speak in a predetermined order and continue repeatedly speaking in that
order until the simulation is complete. Next is the random protocol. An agent is
randomly selected to speak first (Figure A.2, option 2). Then, each subsequent
speaker is randomly selected, with the only restriction being that no agent can speak
twice in a row.

In more complex scenarios with a central agent—an agent that speaks more than
all others—like an auction with an auctioneer or a teacher in a classroom, the system
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Figure A.2: Menu of interaction protocols for the system to choose from for a given
scenario.

Notes: (1) The agents speak in a predetermined order. (2) The agents speak in a random order. (3)

A central agent alternates speaking with non-central agents in a predetermined order. (4) A central

agent alternates speaking with non-central agents in random order. (5) A separate LLM (whom

we call the coordinator) determines who speaks next based on the conversation. (6) Each agent

responds in private to the conversation so far, and the coordinator realizes one of the responses.

can choose the central-ordered or central-random protocols (Figure A.2, options
3 and 4). The former features a central agent who interacts alternately with a series
of non-central agents, following a predetermined order among the non-central agents.
The latter also has a central agent alternating with the non-central agents but in
random order. Whenever there is an order of agents or a central agent, we also query
the system to determine this order.

Finally, we designed two interaction protocols that provide more flexibility. These
interaction protocols involve a separate LLM-powered agent: “the coordinator.” The
coordinator can read through transcripts of the conversations and make decisions
about the simulations when necessary. It can also answer measurement questions
after the experiment. The agents are not aware of the coordinator. The use of the
coordinator is the only part of the system that needs quasi-omniscient supervision.
Fortunately, LLMs perform so well that they can be used to automate this role.
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In the coordinator-before protocol (Figure A.2, option 5), the coordinator is
given the transcript of the conversation after each agent speaks. Then, it selects the
next speaker.

In the coordinator-after protocol (Figure A.2, option 6), after each agent
speaks, all the agents respond, but only the coordinator can see the responses along
with the transcript of the conversation up to that point. Then, the coordinator
chooses the response to “realize” as the real response. The realized response is
added to the conversation’s transcript, and the rest are deleted as if they had never
been made. The only limitation in either of the coordinator protocols is that no
agent can speak twice in a row.

A.3.2 Executing the experimental simulations

The system runs each experimental simulation in parallel, subject to the computa-
tional constraints of the researcher’s machine. When the exogenous variable’s values
present too many combinations to sample from, a subset is randomly selected. In
every simulation, agents are provided with a description of the scenario, their unique
private attributes, the other agents’ roles, any public or scenario-level attributes,
and access to the transcript of the conversation. Then, they interact according to
the chosen interaction protocol. However, none of the protocols specify when the
simulation should end.

It is not obvious how to construct an optimal, nor even good, stopping rule.
Human conversations are unpredictable and do not always end when we expect them
to or want them to [37]. An analogous issue is the halting problem in computer
science, which is the problem of determining when, if ever, an arbitrary computer
program will stop. [57] proved that no universal algorithm exists to solve the halting
problem.

We implemented a two-tier mechanism to determine when to stop each simulation.
These apply to all interaction protocols. After each agent speaks, the coordinator
receives the transcript and decides if the conversation should continue—a yes or no
decision. Additionally, simulations are limited to 20 statements across all agents in
the scenario, not including the coordinator.21 Agents are provided a live count of
the remaining statements during the conversation.

21Limiting the number of turns in the simulation is partially a convenience. As of the time of
running the simulations for this paper, GPT-4 has a maximum token limit of 8,192 tokens, and the
system must provide each agent with the entire conversation up to that point each time they need
to speak.
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A.3.3 Post-simulation survey and data collection

After the experiment, the system conducts a post-experiment survey. As determined
during the SCM construction, the system asks the relevant agents or the coordinator
the survey questions to measure the outcome variable in each simulation. The system
then takes this question’s raw answer and saves it as an observation along with the
values of the exogenous variables. If there is no reasonable answer to the question,
say, if the outcome is conditional, then the system will report an NA for the variable’s
value.

Once the system has the answer to the survey question, it queries an LLM with
the survey question, the agent’s response, and information about the variable’s type
to determine its correct numerical value as a string. If the variable is a count or
continuous variable, it is converted into an integer or a float. If the variable is
ordinal or binary, the system queries an LLM to map it to a whole-number integer
sequence. If the variable is categorical, the system repeats this process, except it
generates a mapping for each raw value to a list of dummy variables. If multiple
survey questions determine a variable, the system aggregates the answers to the
questions using the method selected during the SCM construction phase. Then, it
converts the aggregated value to the appropriate type.

After parsing the data for each outcome, the system has a data frame with one
column of numerical values for each variable in the SCM unless there is a categorical
variable, which always uses dummy variables. In this case, the categorical variable
will add k − 1 columns for that variable, where k is the number of categories.

A.4 Path estimation & model fit

With a complete dataset and the proposed SCM, the system can estimate the linear
SCM without further queries to an LLM. The system uses the R package lavaan to
estimate all paths in the model [50].22 The system can standardize all estimates,
estimate interactions and non-linear terms, and view various summary statistics for
each variable. It can also provide likelihood ratio, Wald, and Lagrange Multiplier
tests to evaluate the model fit and compare path estimates. The system can do any
statistical estimation or test that is built into lavaan.

22For those familiar with lavaan and Python, the system automatically generates the correctly
formatted string in lavaan syntax using a Python dictionary that stores the structure of the SCM
in key-value pairs.
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A.5 Follow-on experiments

Although we have not yet automated this process, the system can perform follow-
on experiments. Insignificant exogenous variables from the first experiment can be
dropped. Then, the system could query an LLM for new exogenous variables based
on what might be interesting, given the already tested causal paths. The system
would use the same agents and interaction protocol, but the agents would vary
on the new exogenous variables and the old ones that were significant in the first
experiment. Theoretically, the system can run follow-on experiments ad infinitum,
and we can imagine future models that could be very good at proposing potential
causal relationships.

B Identifying causal structure ex-ante

The SCM-based approach offers a promising new method for studying simulated be-
havior at scale. However, it is not the only option for such rapid exploration. Others
have designed large, quasi-unstructured simulations demonstrating exciting results.
For example, [42] endow a group of LLM agents with personas and memory systems
and then allow them to freely interact in a simulated community for an extended pe-
riod. Despite no explicit instructions to do so, the agents in the simulation produce
many human-like behaviors, such as throwing parties, going on dates, and making
friends.

While impressive and informative, a problem with such open-ended social simu-
lations is that selecting and analyzing outcomes can be difficult. To unveil insights,
researchers may need to comb through thousands of lines of unstructured text. If
they are interested in casual relationships, they may need to infer the causal struc-
ture ex-post, which can be problematic. In contrast, the SCM framework describes
exactly what needs to be measured as a downstream outcome subject to the exoge-
nous manipulations of the cause. Identification is guaranteed. In this section, we
discuss how assuming or searching for causal structure in observational data, the
type generated from massive open-ended simulations can lead to misidentification
and how using SCMs avoids this problem.

B.1 Assuming causal structure from data

All estimates in the fitted SCMs in Section 3 are unbiased. We know this because
the data comes from an experiment, and we randomized on the causal variables.
A nice feature of a perfectly randomized experiment is that we can get unbiased
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measurements of any downstream endogenous outcome relative to the exogenous
manipulations.23 I.e., the coefficients on the fitted SCM are identified. For example,
in the bargaining experiment, perhaps we are interested in the length of the con-
versation as an outcome, even though it was not a part of the original SCM. The
conversation length can be operationalized as the sum of the number of statements
made by all agents, and we can use the transcript from the finished experiment to
measure it. We can then fit an SCM with the data and get unbiased estimates of
the effect of the exogenous variables on the conversation’s length.

Figure A.3a shows this fitted SCM using the data from the experiment in Sec-
tion 3. Both the buyer’s budget and the seller’s minimum price have a significant
effect on the length of the conversation (p < 0.001; p = 0.026), but the seller’s
emotional attachment does not (p = 0.147).

Figure A.3: Comparison of the true and misspecified SCMs.

Convo
Length

Buyer
Budget

Seller
Min

Seller
Love

-0.111
(0.031)

0.069
(0.031)

0.222
(0.153)

(a) Correctly specified SCM

Convo
Length

Deal
Occurs

Buyer
Budget

Seller
Min

Seller
Love

-0.051
(0.039)

0.012
(0.037)

-1.622
(0.615)

0.182
(0.153)

(b) Misspecified SCM

Notes: Statistically significant paths are marked in red (α = 0.05). Each path is given with its

estimated coefficient and standard error in parentheses. Both SCMs are estimated using the data

from the bargaining scenario in Section 3. Subfigure (a) provides a correctly specified SCM from

a randomized experiment. Subfigure (b) shows a misspecified SCM based on an assumed structure.

The path estimates of the buyer’s budget and the seller’s minimum price go from significant in the

correctly specified SCM to insignificant and far closer to zero in the misspecified SCM.

Suppose we did not know the actual causal structure of these scenarios or that the
data came from an experiment. All we have are the data for the original three causes,
the conversation length, and whether a deal was made (the original outcome). If we

23When we say “downstream,” we mean any variable whose value is realized after the agents
begin interacting in the simulated conversations.
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want to estimate the causal relationships between these variables, we would have to
make untestable assumptions. For example, one could reasonably presume that the
buyer’s budget, the seller’s minimum price, the seller’s emotional attachment, and
whether a deal was made all causally affect the length of the conversation.

Figure A.3b provides the fitted SCM for this proposed causal structure. Only
whether a deal was made was estimated to have a significant effect on the length
of the conversation (p = 0.008). But we know this is wrong. We have the true
causal structure in Figure A.3a from a perfectly randomized experiment, and both
the buyer’s and the seller’s reservation prices had a significant effect on the length
of the conversation. Here, they are insignificant and far closer to zero (p = 0.189;
p = 0.755). Whether or not the deal occurred is a bad control that biases the
estimates—it is probably codetermined with the length of the conversation.24

The informed econometrician may presume that she would never make such a
mistake, but many researchers are not so savvy.25 We were unsure of it until we had
unbiased estimates from the correctly specified SCM as a reference. There are also
many kinds of bad controls, and many of them are less obvious than those in this
example [17]. It is easy to misspecify a model when the data is observational and
has many variables, even when their relationships may seem obvious.

The SCM-based approach avoids the bad controls. The generation of the data is
based on the causal structure. There is no need to instrument endogenous variables
and presume their causal relationships. Exogenous variation is explicitly induced in
the SCM to identify the causal relationships ex-ante. Even if we do not know how a
new outcome is incorporated into the causal structure, we can always reference how
it is affected by the exogenous variables by fitting a simple linear SCM.

B.2 Searching for causal structure in data

Another strategy for identifying causal relationships when the underlying structure is
unknown is to let the data speak for itself. For example, we could use an algorithm to
find the model that makes the data most likely. There are many ways to do this, none
of which can always, or even consistently, identify the correct causal relationships
from observational data [45]. These algorithms take as input potential variables of
interest (a graph with no edges, only nodes) and data for these variables. They

24We cannot be sure about the causal relationship between the length of the conversation and
whether a deal was made because neither is exogenously varied in the experiment. All we know
is that controlling for whether or not a deal occurs induces bias, as we have the experiment as a
reference.

25LLMs are definitely not yet savvy enough to avoid this mistake.
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output a proposed DAG that best fits the data.26

The simplest algorithm is to generate all possible DAGs for existing variables and
then evaluate each model based on some criteria (e.g., maximum likelihood, Bayesian
information criterion, etc.).27 Another method is to add edges that maximize the
criteria greedily. This approach can be further improved by penalizing the model
for complexity (based on additional criteria) and removing edges until the model is
greedily optimized. The second approach is the Greedy Equivalence Search (GES)
algorithm [16], which we used on the data and from all the experiments in Section
3.28

In some experiments, the algorithm incorrectly identified the causal structure.
Figure A.4 provides the DAG identified by the GES algorithm for the tax fraud
scenario. As a reminder, the original causal variables are the defendant’s previous
convictions, the judge’s number of cases heard that day, and the defendant’s level
of remorse, and the outcome is the bail amount. The algorithm has no information
about which variables are exogenously varied, just the raw data.

The GES algorithm identified the defendant’s criminal history and the bail amount
as the only variables in the scenario with any causal relationship. This is partially
correct—we know from the experiment that an increase in the defendant’s previous
convictions caused an increase in the average bail amount. However, the algorithm
identified the causal relationship as equally likely in either direction. There was
no more evidence in the data that the defendant’s criminal history caused the bail
amount than the bail amount caused the defendant’s criminal history. And while we
know that the former is correct from our experiment, a researcher using the algo-
rithm without the correctly specified DAG would not. They would have to make an
assumption, which, as we have shown, can be problematic.

The SCM-based approach avoids search problems, as we never need to search
for the causal structure given the data. Instead, we generate the data based on a
proposed causal structure. Even if we want to measure a new outcome on the existing
experimental data, we have already identified the sources of exogenous variation.

We should note that problems with searching for or assuming causal structures
from data are not new. [45] makes a similar point many times. However, social

26These algorithms often do not presume a functional form, so we refer refer to hypotheses as
DAGs, not SCMs, in this section.

27The number of possible DAGs grows exponentially with the number of nodes. For example,
for n = 1, 2, 3, and 4 nodes, there are 1, 3, 25, and 543 possible DAGs. This is a combinatorial
explosion, and it is not feasible to evaluate all potential models for a large number of nodes, which
presents further problems for this approach.

28The GES algorithm is not perfectly stable; different runs on the same data can produce different
results, which is its own problem.
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Figure A.4: Incorrect causal structure identified by the GES algorithm for the tax
fraud experiment.

Bail
Amount

Crime
History

Remorse

Num
Cases

Notes: The Greedy Equivalence Search (GES) algorithm can incorrectly identify the causal structure

of observational data. In the tax fraud scenario, we know from Figure 3b and the accompanying

experiment that an increase in the defendant’s previous convictions caused an increase in the av-

erage bail amount. However, the algorithm identified the causal relationship as equally likely in

either direction. Without the correctly specified DAG, a researcher would have to assume the causal

structure of the data, which can be problematic.

scientists have never had the tools to induce exogenous variation and explore causal
relationships at scale in many different scenarios.

C Hypotheses as structural causal models

Hypotheses stated in natural language can be ambiguous, making it challenging to
discern precise implied causal relationships. Suppose a researcher is interested in
two-person bargaining scenarios with a buyer and a seller. And she has the following
natural language hypothesis about two people bargaining over a mug: “the buyer’s
budget and the seller’s sentimental attachment to the mug causally affect whether
a deal occurs.” Figure A.5 offers three ways we can interpret this causal state-
ment: (A.5a) the budget and the sentimental attachment could independently affect
whether a deal occurs, (A.5b) the budget could mediate the relationship between the
attachment and the outcome, or (A.5c), the mediation could be reversed.29

For (A.5a), an example could be an online marketplace where the buyer and seller
cannot communicate. When the buyer has a higher budget, she is more likely to buy
the mug. If the seller is more sentimentally attached to the mug, he may raise the
price and, therefore, lower the probability of a deal. However, without any form
of communication, these causal variables would not affect each other. For (A.5b),
if the buyer and the seller can communicate and the seller realizes that the buyer

29This list of interpretations is not exhaustive.
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Figure A.5: Valid graphical interpretations of the same natural language
hypothesis.

Buyer
Budget

Seller
Attach

Deal
Occurs

(a) Independent causes

Buyer
Budget

Seller
Attach

Deal
Occurs

(b) Mediation

Buyer
Budget

Seller
Attach

Deal
Occurs

(c) Alternative mediation

Notes: Each directed acyclic graph (DAG) is a valid causal interpretation of the following natu-

ral language hypothesis: “The buyer’s budget and the seller’s sentimental attachment to the mug

causally affect whether a deal occurs.” In contrast, each DAG is unique in its declaration of the

causal relationships. In DAGs, each arrow represents a direct causal relationship, and the absence

of an arrow between two variables indicates no causal relationship. If a variable is not included in

the graph, then there is no stated causal relationship about this variable. While DAGs are unam-

biguous in their causal claims about which variables cause which other variables, they do not make

any claims about the functional form of the relationships between variables.

is willing to spend more, he might become more attached to the mug and value it
higher because of the increased potential sale price. Finally, for (A.5c), the mediated
relationship could be reversed. If the buyer sees that the seller is attached to the
mug, this may cause her to increase her budget, which increases the probability of
a deal. The ambiguity of stating even simple hypotheses makes natural language
insufficient for our purposes.

The graphs in Figure A.5 are directed acyclic graphs (DAGs) and represent causal
relationships. DAGs unambiguously state whether a variable is a direct cause of
another variable—the direction of the arrow indicates the direction of the causal
relationship [27]. The absence of an arrow between two variables indicates no causal
relationship. If a variable is not included in the graph, then there is no stated causal
relationship involving this variable.

While DAGs are clear in their claims about which variables cause others, they
do not make any statements about the functional form of the relationships between
variables. In contrast, structural causal models unambiguously state the causal re-
lationships between variables and the functional forms of these relationships [44].

Structural causal models (SCM), as first explored by [61], represent hypotheses
as sets of equations. Suppose we assume the relationships between the variables in
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Figure A.5 are linear. We can write an SCM for each of the DAGs. Figure A.5a can
be stated as:

DealOccurs = β1BuyerBudget+ β2SellerAttachment+ ε; (1)

Figure A.5b as:

BuyerBudget = β0SellerAttachment+ η (2)

DealOccurs = β1BuyerBudget+ β2SellerAttachment+ ε; (3)

and Figure A.5c as:

SellerAttachment = β0BuyerBudget+ η (4)

DealOccurs = β1BuyerBudget+ β2SellerAttachment+ ε. (5)

The set of equations that represent the causal relationships between variables
make the SCM. We could also write each SCM with interaction terms for some or
all of the causes or even use other types of link functions, and these would all be
equally valid representations of the corresponding DAGs.
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D Additional figures and tables

Figure A.6: Fitted SCM with interaction terms for “two people bargaining over a
mug.”

deal-for-mug
µ = 0.50
σ2 = 0.25

buyers-budget
-x-

sell-love-mug
µ = 36.67
σ2 = 826.22

buyers-budget
µ = 12.22
σ2 = 47.95

sell-min-mug
µ = 12.11
σ2 = 49.43

sell-min-mug
-x-

sell-love-mug
µ = 36.33
σ2 = 837.11

buyers-budget
-x-

sell-min-mug
µ = 148.02

σ2 = 16787.95

sell-love-mug
µ = 3.00
σ2 = 2.00

0.032
(0.007)

-0.045
(0.007)

-0.094
(0.032)

-0.000
(0.000)

0.002
(0.002)

0.004
(0.002)

Notes: Each variable is given with its mean and variance. The edges are labeled with their unstan-
dardized path estimate and standard error. There were 405 simulations with these agents: [‘buyer’,
‘seller’].
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Figure A.7: Fitted SCM with interaction terms for “a judge is setting bail for a
criminal defendant who committed 50,000 dollars in tax fraud.”

bail-amt
µ = 54428.57

σ2 = 186000000.00

num-judge-cases
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num-judge-cases
-x-
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303.4
(545.5)

383.9
(282.6)

-29.6
(1180.9)

-1.301
(26.231)

77.0
(144.8)

-150.8
(76.6)

Notes: Each variable is given with its mean and variance. The edges are labeled with their unstan-
dardized path estimate and standard error. There were 245 simulations with these agents: [‘judge’,
‘defendant’, ‘defense attorney’, ‘prosecutor’].
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Figure A.8: Fitted SCM with interaction terms for “a person is interviewing for a
job as a lawyer.”

hire-decision
µ = 0.62
σ2 = 0.23

inter-friendly
-x-
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-0.013
(0.074)

0.005
(0.007)

0.005
(0.010)

-0.006
(0.006)

0.000
(0.000)

Notes: Each variable is given with its mean and variance. The edges are labeled with their un-
standardized path estimate and standard error. There were 80 simulations with these agents: [‘job
applicant’, ‘employer’].
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Figure A.9: Fitted SCM with interaction terms for “3 bidders participating in an
auction for a piece of art starting at fifty dollars.”

final-art-price
µ = 186.53
σ2 = 3867.92

bid1-max-budget
-x-

bid2-max-budg
µ = 40000.00
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0.001
(0.000)

0.000
(0.000)

0.000
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Notes: Each variable is given with its mean and variance. The edges are labeled with their unstan-
dardized path estimate and standard error. There were 343 simulations with these agents: [‘bidder
1’, ‘bidder 2’, ‘bidder 3’, ‘auctioneer’].
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Table A.1: GPT-4’s predictions for the path estimates for the experiments in
Section 3 at temperature 0.

Scenario
(Outcome)

Exogenous
Variable

Path
Estimate

(SE)

GPT-4
Guess

Two-
tailed
T-Test

GPT-4
Sign

Correct

| Predicted
Experiment

|
Estimates

Mug
Bargaining

(Deal Made)

Buyer’s
Budget

0.037*
(0.003)

0.05* p < 0.001 Yes 1.35

Seller’s Min
Price

-0.035*
(0.002)

-0.07* p < 0.001 Yes 2.00

Seller’s
Attachment

-0.025*
(0.012)

0.02 p < 0.001 No 0.80

Art Auction
(Final Price)

Bidder 1
Budget

0.35*
(0.015)

0.5* p < 0.001 Yes 1.43

Bidder 2
Valuation

0.29*
(0.015)

0.5* p < 0.001 Yes 1.72

Bidder 3
Valuation

0.31*
(0.015 )

0.5* p < 0.001 Yes 1.610

Bail Hearing
(Bail

Amount)

Defendant’s
Previous

Convictions

521.53*
(206.567)

5000* p < 0.001 Yes 9.59

Judge Cases
That Day

-74.632
(109.263)

-200 p = 0.252 Yes 2.68

Defendant’s
Remorse

-1153.061
(603.325)

-3000* p = 0.002 Yes 2.60

Lawyer
Interview

(Gets Job)

Passed Bar 0.750*
(0.068)

0.6* p = 0.03 Yes 0.80

Interviewer
Friendliness

-0.002
(0.005)

0.2 p < 0.001 No 100.00

Applicant’s
Height

0.003
(0.003)

0.1 p < 0.001 Yes 33.33

Notes: The table provides GPT-4’s prediction for the path estimate for each experiment in Section 3

From left to right, column 1 provides the scenario and outcome, column 2 provides the causal variable

name, column 3 the path estimate and its standard error, and column 4 shows the LLM’s prediction

for the path estimate and whether it was predicted to be statistically significant. Column 5 gives

the p-value of a two-tailed t-test comparing the predictions to the results, column 6 is whether the

predicted sign of the estimate was correct, and column 7 is the magnitude of the difference between

the predicted and actual estimate.
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Table A.2: GPT-4’s predictions for the path estimates for the experiments in
Section 3 at temperature 1.

Scenario
(Outcome)

Exogenous
Variable

Path
Estimate

(SE)

GPT-4
Guess

Two-
tailed
T-Test

GPT-4
Sign

Correct
(SE)

| Predicted
Experiment

|
Estimates

Mug
Bargaining

(Deal Made)

Buyer’s
Budget

0.037*
(0.003)

0.117*
(0.016)

p < 0.001 Yes 3.16

Seller’s Min
Price

-0.035*
(0.002)

0.008*
(0.018)

p = 0.019 No 0.23

Seller’s
Attachment

-0.025*
(0.012)

0.062
(0.013)

p < 0.001 No 2.48

Art Auction
(Final Price)

Bidder 1
Budget

0.35*
(0.015)

1.279*
(0.501)

p = 0.064 Yes 3.65

Bidder 2
Valuation

0.29*
(0.015)

1.263*
(0.501)

p = 0.053 Yes 4.36

Bidder 3
Valuation

0.31*
(0.015 )

1.269*
(0.501)

p = 0.056 Yes 4.09

Bail Hearing
(Bail

Amount)

Defendant’s
Previous

Convictions

521.53*
(206.567)

1785.192*
(157.347)

p < 0.001 Yes 3.42

Judge Cases
That Day

-74.632
(109.263)

644.316*
(79.919)

p < 0.001 No 8.63

Defendant’s
Remorse

-1153.061
(603.325)

-879.945*
(92.700)

p = 0.09 Yes 0.76

Lawyer
Interview

(Gets Job)

Passed Bar 0.750*
(0.068)

0.408*
(0.018)

p = 0.998 Yes 0.54

Interviewer
Friendliness

-0.002
(0.005)

0.236*
(0.015)

p = 0.999 No 118

Applicant’s
Height

0.003
(0.003)

0.108
(0.009)

p = 0.999 Yes 36

Notes: The table provides GPT-4’s prediction for the path estimate for each experiment in Section 3

Each prediction is the average of 100 prompts at temperature 1. From left to right, column 1 provides

the scenario and outcome, column 2 provides the causal variable name, column 3 the path estimate

and its standard error, and column 4 shows the LLM’s average prediction for the path estimate

and whether it was predicted to be statistically significant more than 50% of the time. The given

standard error is for the mean of the predictions, not the LLM’s prediction for the standard error.

Column 5 gives the p-value of a two-tailed t-test comparing the average prediction to the results,

column 6 is whether the predicted sign of the estimate was correct more than 50% of the time, and

column 7 is the magnitude of the difference between the predicted and actual estimate.
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Figure A.10: Fitted SCM for auction with bidder’s reservation prices and second
highest bid as exogenous variables.

final-art-price
µ = 186.53
σ2 = 3867.92

bid1-max-budget
µ = 200.00

σ2 = 10000.00

bid2-max-budg
µ = 200.00

σ2 = 10000.00

bid3-max-budg
µ = 200.00

σ2 = 10000.00

2nd-highest-budget
µ = 180.99
σ2 = 4565.99

0.047
(0.009)

0.039
(0.008)

0.03
(0.009)

final-art-price
µ = 186.53
σ2 = 3867.92

0.826
(0.018)

Notes: Each variable is given with its mean and variance. The edges are labeled with their unstan-
dardized path estimate and standard error. There were 343 simulations with these agents: [‘bidder
1’, ‘bidder 2’, ‘bidder 3’, ‘auctioneer’].

Figure A.11: Fitted SCM for auction and second highest bid as exogenous variables.

final-art-price
µ = 186.53
σ2 = 3867.92

2nd-highest-budget
µ = 180.99
σ2 = 4565.99

0.912
(0.009)

Notes: Each variable is given with its mean and variance. The edges are labeled with their unstan-
dardized path estimate and standard error. There were 343 simulations with these agents: [‘bidder
1’, ‘bidder 2’, ‘bidder 3’, ‘auctioneer’].
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Figure A.12: Comparison of the LLM’s predictions to the theoretical predictions
and all experimental results for the auction scenario.
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Notes: The columns correspond to the different reservation values for bidder 3 in a given simulation,

and the rows correspond to the different reservation values for bidder 2. The y-axis is the clearing

price, and the x-axis lists bidder 1’s reservation price. The black triangles track the observed clearing

price in each simulated experiment, the black line shows the predictions made by auction theory

(MSETheory = 128), the blue line indicates the LLM’s predictions without the fitted SCM—the

predict-yi task (MSEyi = 8628), and the red curve is the LLM’s predictions with the fitted SCM—

the predict-yi|β̂−i task (MSEyi|β̂−i
= 1505).
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Figure A.13: Prompt used to elicity LLM predictions for the Predict-β̂ task.

I have just run an experiment to estimate the paths in the SCM from the
TIKZ diagram below, which is delineated by triple backticks. We ran the
experiment on multiple instances of GPT-4, once for each combination of the
different “Attribute Treatments” in the accompanying table. This table also
includes information about the variables and the individual agents involved in
the scenario. Your task is to predict the point estimates for the paths in the
SCMs as accurately as possible based on the experiments. You can see the
summary statistics of the treatment variables below each variable name in the
Tikz Diagram. We want to know how good you are at predicting the outcomes
of experiments run on you. Make sure you consider the correct units for both
the cause and the outcome for each path. Please output your answer in the
following form and do not include any other text: {’predictions’: dictionary of
point estimate predictions for each path} {’sig’: dictionary of whether or not
each path is significant} ‘‘‘Figure X and Table X’’’

Notes: For each experiment, we input the accompanying table and the TIKZ diagram into the LLM

between the triple backticks. For example, for the bargaining scenario, these are Figure 2b and

Table 2a.
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Table A.3: Example of the information generated for each variable in an SCM.

Information Type Deal Occurred
(Endogenous)

Buyer’s Budget
(Exogenous)

Seller’s Attachment
(Exogenous)

Operationalization 1 if a deal

occurs, 0

otherwise

Max amount the

buyer will

spend

Seller’s emotional

attachment level

on a scale

Variable Type Binary Continuous Ordinal

Units Binary Dollars Levels of

attachment

Levels {0, 1} {$0-$5, ...,

$40+}
{Low, ..., High}

Explicit
Measurement
Questions

Buyer: ‘‘Did

a deal

occur?’’

- -

Data Aggregation
Method

Single Value - -

Scenario or
Individual

- Individual Individual

Varied Attribute
Proxies

- ‘‘Your budget’’ ‘‘Your attachment

level’’

Attribute
Treatments

- {$3, ..., $45} {no attachment,

...,

extreme attachment}
Notes: Each row shows a different piece of information generated for the variables in the SCM.
The first column represents the type of information, the second column represents the information
for the endogenous variable, and the third and fourth columns represent the information for the
exogenous variables. This is example information based on the SCM in Figure A.5a.
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E Additional features of the SCM-based approach

E.1 LLM alignment and safety

One way to view our system is that it allows an LLM to “imagine” hypothetical situ-
ations before they happen. This is similar to how humans simulate different versions
of an event in their mind, a mental dress rehearsal, to improve their understanding
of a situation without experiencing it. For example, when an employee wants to
ask their boss for a raise, they may imagine the conversation and possible counter-
factual repetitions to prepare for the real thing. Our system does this hypothetical
counterfactual simulation with more control on a much larger scale with complete
independence between the simulations. It lets an LLM acquire social scientific knowl-
edge autonomously.

This suggests a way to transfer the relationships from the black box LLM into
human-interpretable hypotheses that can be explicitly tested. We can imagine using
this sort of automated and iterative hypothesis testing as a “top-down” approach to
exploring the behavior of any LLM [8]. Top-down exploration could allow researchers
to quickly identify when an LLM’s behavior deviates from “what a human would do”
(or any other measure of behavior) in a given situation. Then, this information can
be used better to align the LLM with a given set of objectives. A large portion of the
LLM evaluation process is still done by humans [41]. While a human should always
be in the loop, efficiency can be gained with an easily interpretable and automated
approach.

E.2 Interpreting hypotheses from data

As noted in Section 1, a recent and exciting trend in the social sciences, specifically
in economics (e.g., lotteries and bail decisions), is the use of machine learning to
generate novel hypotheses [19, 35, 47]. The approach to generate these hypotheses
can be broadly summarized as follows.

First, a very large data set is acquired with a clear outcome and possible ex-
planatory variables. At least one of these variables is “unstructured,” in the sense
that it does not fit neatly into predefined data models or is not easily quantifiable.
This could include text, images, audio, etc. Then, a black-box deep neural network
is trained to predict the outcome from the explanatory variables with the highest
possible accuracy.

Next, an economic model of interest (e.g., expected utility theory) is used to
predict the outcome on the same data set. The model’s predictions are compared to
those made by the deep neural network. Invariably, the neural network is far better at
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predicting the outcome than the economic model, even on a holdout test data set.30

This difference in predictive power is generally not surprising—the unstructured
explanatory variables (the images, text, etc.) often contain a lot of latent information
that the economic model does not capture.31 However, due to the black-box nature
of the neural network, it is unclear which relationships in the data it has identified
to comparatively predict the outcome so well.

The identification of these hidden relationships and subsequent transformation
into human-interpretable features is the generation of novel hypotheses. Unfortu-
nately, this transformation is generally non-obvious, time-consuming, and expensive.
Methods to transform the hidden relationships into human-interpretable features in-
clude building new complex machine-learning models, running multiple experiments
or surveys on human subjects, hand-coding variables of interest, and a combination
of all three. None of these are guaranteed to be successful. This is not to say that
the process is not valuable, but it has its practical limitations.

In contrast, hypotheses generated as SCMs are always easy to interpret. They
are directed graphs with variables labeled in natural language. All that is needed to
generate a new hypothesis is a proposed causal path between two variables—one of
the main purposes of the system presented in this paper.

One way to view the system is as a tool for transforming information from an
LLM (a large black-box neural network) into an interpretable SCM—similar to the
methods discussed above. But with the SCM-based approach, this process is auto-
mated, inexpensive, fast, and interpretable.

30The fraction of an economic model’s maximum possible predictable variation can account for
is the model’s “completeness” [21]. In this case, the ratio of the predictive power of the economic
model to the predictive power of the machine learning model. When a model is complete, this ratio
is ≈ 1 because all possible predictable variation is accounted for.

31Formal economic models generally do not incorporate unstructured data in their predictions.
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